Skip to main content

Resources

Resources

A repository of data, publications, tools, and other products from project teams, Science Collaborative program, and partners.

Displaying 71 - 80 of 171
Data |

These datasets and statistical analysis codes model surge barrier effects on the Hudson River estuary, developed as part of the 2018 catalyst project Assessing the Physical Effects of Storm Surge Barriers on the Harbor and Hudson River Estuary.

Multimedia |

Slides and a video recording are available from a final stakholder meeting for a study that examined the buffering capacity of a shoreline marsh along Hudson River estuary.

Data |

This dataset compiles salt marsh monitoring from four New England NERRs from 2010 to 2018, as part of a catalyst project to sythesize and identify regional trends in salt marsh data in the reserve system.

Tool |

This how-to guide describes how to synthesize salt marsh monitoring data from the National Estuarine Research Reserve System.

Tool |

This how-to guide describes how to integrate plant cover data from two common methods of estimating marsh plant cover.

Multimedia |

This webinar, conducted June 30, 2020, presents research findings from the 2018-2020 catalyst project Assessing the Physical Effects of Storm Surge Barriers on the Harbor and Hudson River Estuary.

Data |

These datasets contain sediment core samples from dam impoundments on tributaries to the Hudson River and tidal wetland complexes in the Hudson River estuary, collected as part of the 2016-2020 collaborative research project Dams and Sediment on the Hudson (DaSH).

Webinar Summary |

This resource contains the presenter slides, Q&A responses, recording, and presenter bios from the June 2020 webinar Credit for Going Green: Using an Expert Panel Process to Quantify the Benefits of Buffers.

Tool |

This dam sediment estimation tool, developed through the Dams and Sediment in the Hudson (DaSH) project, supports dam removal planning for the Lower Hudson River valley.

Journal Article |

This open-access article, published Geophysical Research Letters in 2020, uses turbidity observations to characterize estuary response following extreme discharge such as from storm-related flooding, which can be a proxy for sediment release from dam removals.