Skip to main content

Resources

Resources

A repository of data, publications, tools, and other products from project teams, Science Collaborative program, and partners.

Displaying 1 - 10 of 30
Data |
About this project

The 2020-2021 catalyst project Refining Techniques for High-Frequency Monitoring of Chlorophyll in the NERRS brought together twelve biogeochemically diverse reserves to compare results from new YSI in situ sensor technology with ex

Project Overview |

This project overview describes a 2017 Collaborative Research project that explores how oyster aquaculture practices may be used to remediate water quality in Cape Cod, Massachusetts.

Data |

This resource includes links to five datasets generated by a collaborative research project that measured nitrogen removal from oyster aquaculture using complement biogeochemistry and genetic methods.

Data |

These marsh sustainability and hydrology datasets were collected as part of a 2017 collaborative research project.

Project Overview |

This project overview describes a 2017 Collaborative Research project that is piloting and refining DNA-based monitoring protocols that can be applied to specific issues and species of interest in estuarine ecosystems.

Project Overview |

This project overview describes a 2018 Catalyst project led by Grand Bay Reserve that developed standardized tools to quality-check, analyze, and visualize Surface Elevation Table data.

Data |

This data resource includes eDNA sequences, fish species summary tables, and DNA extractions from Wells, Great Bay, Hudson, Apalachicola, South Slough, and Heʻeia National Estuarine Research Reserves.

Data |

These five related carbon storage, greenhouse gas flux and environmental variable datasets were generated by the Bringing Wetlands to Market research team and used to develop a coastal wetland greenhouse gas model for New England.

Data |
About this Project

Thin-layer placement (TLP) is an emergent climate adaptation strategy that mimics natural deposition processes in tidal marshes by adding a small amount of sediment on top of marsh in order to maintain elevation relative to sea level rise.

Project Overview |

This project overview describes a 2015 Collaborative Research project where Waquoit Bay Reserve is working with end users to test the applicability of a previously-developed model to accurately predict greenhouse gas fluxes across a wide range of coastal wetlands.