

A Guide to Integrate Plant Cover Data from Two Different Methods:

POINT INTERCEPT AND OCULAR COVER

PROJECT GOAL

Integration of data from two common methods estimating marsh plant cover: Point-intercept & Ocular cover

PROJECT TEAM

GREAT BAY NATIONAL ESTUARINE RESEARCH RESERVE | NEW HAMPSHIRE

Christopher Peter

Christopher.Peter@wildlife.nh.gov (603) 294-0146

Briana Fischella

NARRAGANSETT BAY NATIONAL ESTUARINE RESEARCH RESERVE | RHODE ISLAND

Kenny Raposa

WAQUOIT BAY NATIONAL ESTUARINE RESEARCH RESERVE | MASSACHUSETTS

Megan Tyrrell Jenny Allen Jordan Mora

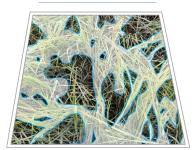
WELLS NATIONAL ESTUARINE RESEARCH RESERVE

Jason Goldstein Chris Feurt Laura Crane

JACKSON ESTUARINE LABORATORY | UNIVERSITY OF NEW HAMPSHIRE

David Burdick

OVERVIEW


When it comes to monitoring plant cover in tidal marshes, there is a lack of consensus on how. Multiple methods exist to estimate plant cover, which can confound interpretation when making comparisons across methods. Here, we provide a novel and accurate approach to integrate the two most common methods:

PI Point Intercept

Presence/absence of cover categories using a thin pin in a gridded fixed area: 50 points in a 1m² plot.

OC Ocular Cover

Visual estimates of abundance for cover categories in a fixed area: non-binned estimates totaling to 100% in a 1m² plot.

METHOD

Our project team assessed over 100 salt marsh vegetation plots throughout New England located in four National Estuarine Research Reserves using both methods. From this monitoring, we developed a statistical relationship between them using a series of **Regressions Across Morphological Archetypes (RAMA)**. See figure and table below for details on regressions and archetypes. Our results provide a new method to convert point intercept (PI) data into a format more compatible to ocular cover (OC) in 4 simple steps:

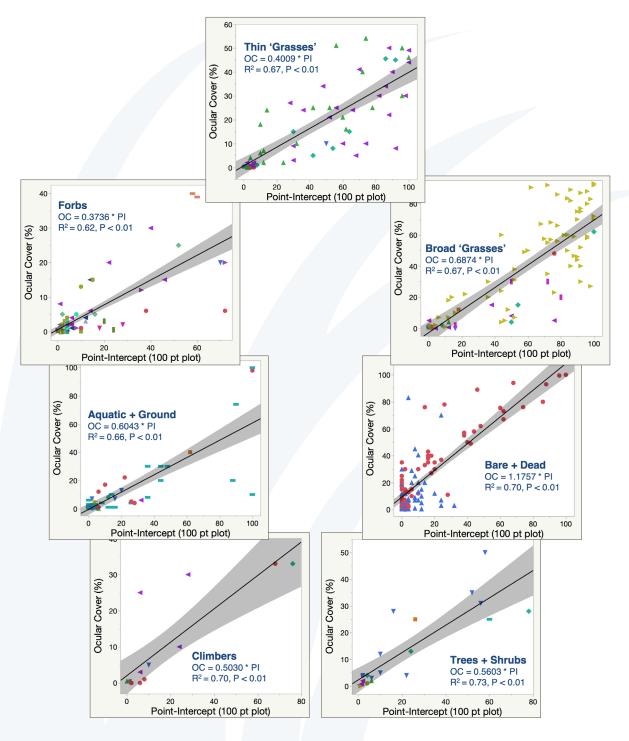
Assign
Morphological
Archetypes
Complete list in
seperate guide
to 100 points

Multiply
Correction
Factor
Equations in
regression
graphs

Normalize 100% total

Four steps involved with intergrating PI with OC using RAMA

per plot



TRANSFORMATIONS OF PI • OC

Transformations were most similar when using linear regressions across morphological archetypes (groupings of abiotic cover and plant species similar in structure). To transform, use a correction factor (provided as the **slope in the figures**) from the appropriate morphological archetype. For a full list of each morphological archetype, see page 3. **Full details on page 2**.

Notes: Regressions were created using a linear model (shown). Correction factors are derived from the slope of a regression constrained to zero (not shown). Graph symbols represent different plant species or abiotic cover categories.

PLOT EXAMPLE

Using data from one of our plots monitored with both PI and OC (Great Bay SP3-3), we illustrate how to transform the data. The below table shows PI raw values (50-point plot, 1m²) being transformed using a couple of steps to become more compatible to OC data. See figure below for details, including equations

	Point -Intercept				Ocular
	Raw data	to 100 pts	Apply Cor. Factor (CF)	Normalize to 100%	Cover (field)
Wrack	7	14	8.4	7.6	10
S. alterniflora	45	90	62.1	56.2	50
S. patens	50	100	40.0	36.2	40
Total	102	204	110.5	100.0	100

Archetypes

Correction Factor (CF)

14*0.60 = 8.4 S. alterniflora 90*0.69 = 62.1

100*0.40 = 40.0

Normalize

= (OC / Total OC)*100

(8.4/110)*100 = 7.6

S. alterniflora

(62.1/110)*100 = 56.2

S. patens

(40.0/110)*100 = 36.2

Total = 100

Assign Morphological

Example data shown above is from a 50-point plot in a 1m² quadrat.

SUMMARY

Wrack

S. patens

Convert PI to 100 points per plot

PI * 2 = PI100

S. alterniflora <u>45*2 = 90</u>

7 *2 = 14

We provide an easy process for transforming point-intercept data to be more compatible with ocular cover data:

Regressions Across Morphological Archetypes (RAMA).

This transformation method was compared with traditional methods and provided the most statistically similar data to OC. Transformed data, however, remains less accurate than data collected with a single method due to inherent differences between the protocols. For instance, we found greater dissimilarity between transformed PI and OC in the Bare + Dead archetype. This is likely the result of the PI method only counting bare or dead cover when the pin does not 'hit' any live cover categories, whereas OC weights all covers equally. As such, we recommend utilizing a single protocol when possible. This work is from a larger project funded by the National Science Collaborative. For a full list of project participants who help create this guide, see Burdick et al. 2020.

REFERENCES

Burdick, D.M., C.R. Peter, C. Feurt, B. Fischella, M. Tyrrell, J. Allen, J. Goldstein, K. Raposa, J. Mora, L. Crane. 2020. Synthesizing NERR Sentinel Site data to improve coastal wetland management across New England. Final Report to National Science Collaborative.

www.nerrssciencecollaborative.org/project/Burdick18

Morphological Archetypes	Cover	
Bare/Dead	Bare Ground	
Bare/Dead	Dead	
Ground / Algae	Algae	
Ground / Algae	Ascophyllum nodosum	
Ground / Algae	Fucus spp	
Ground / Algae	Fucus vesiculosus	
Ground / Algae	Gracilaria sp.	
Ground / Algae	Moss	
Ground / Algae	Ruppia maritima	
Ground / Algae	Ulva Lactuca	
Ground / Algae	Wrack	
Forbs	Atriplex patula	
Forbs	Galium palustre	
Forbs	Impatiens capensis	
Forbs	Iris versicolor	
Forbs	Lepedium virginicum	
Forbs	Limonium nashii	
Forbs	Mentha arvensis	
Forbs	Oenothera biennis	
Forbs	Onoclea sensibilis	
Forbs	Osmunda cinnamomea	
Forbs	Plantago spp	
Forbs	Polygonum ramosissimum	
Forbs	Salicornia depressa	
Forbs	Salicornia maritima	
Forbs	Salicornia spp	
Forbs	Solidago sempervirens	
Forbs	Spergularia marina	
Forbs	Suaeda linearis	
Forbs	Sueda maritima	
Forbs	Symphyotrichum novi-belgii	
Forbs	Symphyotrichum spp.	
Forbs	Symphyotrichum subulatas	
Forbs	Teucrium canadense	
Forbs	Thalictrum dioicum	
Forbs	Thalictrum polygamum	
Forbs	Trientalis borealis	

Morphological Archetypes	Cover
Broad 'Grasses'	Agropyron pungens
Broad 'Grasses'	Ammophilia breviligulata
Broad 'Grasses'	Carex spp.
Broad 'Grasses'	Phragmites australis
Broad 'Grasses'	Phragmites australis var. americanus
Broad 'Grasses'	Schoenoplectus maritimus
Broad 'Grasses'	Schoenoplectus robustus
Broad 'Grasses'	Spartina alterniflora
Broad 'Grasses'	Spartina pectinata
Broad 'Grasses'	Typha angustifolia
Thin' Grasses'	Agrostis stolonifera
Thin' Grasses'	Distichlis spicata
Thin' Grasses'	Festuca rubra
Thin' Grasses'	Juncus balticus
Thin' Grasses'	Juncus gerardii
Thin' Grasses'	Spartina patens
Climbers	Calystegia sepium
Climbers	Cuscuta gronovii
Climbers	Cuscuta spp.
Climbers	Parthenocissus quinquefolia
Climbers	Smilax spp.
Climbers	Solanum dulcamara
Climbers	Toxicodendron radicans
Shrubs & Trees	Acer rubrum
Shrubs & Trees	Alnus spp
Shrubs & Trees	Baccharis halimifolia
Shrubs & Trees	lva frutescens
Shrubs & Trees	Juniperus virginiana
Shrubs & Trees	Myrica pensylvanica
Shrubs & Trees	Myrica spp
Shrubs & Trees	Picea spp
Shrubs & Trees	Prunus maritima
Shrubs & Trees	Quercus rubra
Shrubs & Trees	Rosa multiflora
Shrubs & Trees	Rosa rugosa
Shrubs & Trees	Spiraea tomentosa

Full abiotic cover and plant species list grouped by morphological archetype.