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Coastal marshes provide valuable 
protection for coastal communities 
from storm‑induced wave, flood, 
and structural loss in a changing 
climate
Y. Peter Sheng1*, Vladimir A. Paramygin1, Adail A. Rivera‑Nieves1, Ruizhi Zou1, 
Sarah Fernald2, Timothy Hall3 & Klaus Jacob4

Wetlands such as tidal marshes and mangroves are known to buffer coastal communities from 
wave, flood, and structural loss during storms. Coastal communities and resource managers seek to 
understand the ecosystem service value of coastal wetlands for reducing storm-induced flood loss 
in a changing climate. A recent modeling study found that a tall and dense Phragmites-dominated 
Piermont Marsh reduced the flood loss in the Village of Piermont, New York, U.S.A. during Superstorm 
Sandy and the 1% annual chance flood and wave event by 8% and 11%, respectively. Here we used 
the same modeling approach to examine the marsh’s buffering capacity in a changing climate (from 
2020 to 2100), considering a potential marsh restoration plan (from 2020 to 2025) and potential 
marsh loss due to sea-level rise. Results showed that from 2020 to 2100, the 1% annual chance flood, 
wave, and structural loss would increase due to sea-level rise, storms, and marsh loss. However, the 
marsh will buffer ~ 11–12% of structural loss until 2050. Under the extreme SLR scenario of 2.89 m 
and a low accretion rate, Piermont Marsh is expected to lose its buffering capacity by 2080–2100 but 
will retain some buffering capacity with a high accretion rate of 10 mm/year and marsh growth. The 
marsh’s buffering capacity will remain during extra-tropical storms during winter and spring unless the 
wind has a significant northerly component. Lessons learned from this study can be used by coastal 
communities and marsh managers to develop coastal resiliency and marsh restoration plan.

Coastal wetlands such as tidal marshes and mangroves buffer coastal communities from wave, flood, and struc-
tural loss during tropical cyclones (TCs). As coastal communities strive to safeguard themselves from increas-
ing storm-induced flood risks, they seek ways to maximize the protective powers of their natural features, such 
as coastal wetlands. However, the value of coastal wetlands for flood protection is often over-estimated1,2 or 
under-estimated3 due to flaws in the analysis. For example, Narayan et al.1, hereafter referred to as NAR17, over-
estimated the value of wetland for flood protection in New Jersey (NJ) during Superstorm Sandy4,5, due to lack of 
model validation with the actual loss data, while Lathrop et al.5,5, herafter referred to as LAT19, under-estimated 
the wetland value due to the use of loss data and regression model only without a dynamic process-based flood 
model. Using historical data of combined wind and flood losses and regeression model only, Sun and Carlson2, 
herefafter referred to as SC20, grossly over-estimated the value of wetland for flood and wind protection. Over-
estimation or under-estimation of the wetlands’ value for flood protection can greatly impact adaptation and 
resilience planning effort by coastal communities in the twenty-first century. Communities not only would like 
to know the value of coastal wetlands for flood protection in the current climate, they would also like to know 
the impact of climate change (e.g., sea level rise) as well as wetland management action on the value of coastal 
wetlands. Sheng et al.6,7, hereafter referredto as SHE21a and SHE21b, used extensive data and comprehensive 
dynamic and regression models to estimate the value of coastal wetlands for flood protection in NJ and New 
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York (NY) under current climate condition. This paper extends the previous studies to quantify the value of 
coastal wetlands for flood protection in the twenty-first century (from 2020 to 2100) with various SLR scenarios 
and marsh management plans.

During Superstorm Sandy, coastal wetlands along New Jersey (NJ), New York (NY), and Connecticut (CT) 
coasts (Fig. 1a) provided a modest reduction of structural loss in coastal communities1,3,6 due to the relatively 
sparse and low Spartina marsh and the high storm tide. On the other hand, Sheng et al.7 found that the tall and 
dense Phragmites-dominated Piermont Marsh buffered the Village of Piermont, located 40 km north (upstream) 
of New York City (NYC) on the Hudson River, from massive structural loss during Sandy. If the Phragmites were 
successfully replaced by the native Typha from the nearby Iona Marsh, the buffering capacity of Piermont Marsh 
was found to remain during Sandy unless it occurred in the winter or spring (an improbable occurrence for such 
high storm tides) when Typha is much lower and sparser.

The reduction of storm-induced flood damage in NYC by natural features varied geographically, and nature-
based solutions to coastal flooding must be tailored to specific local conditions to be effective8. SHE21a6 and 
SHE21b7 found that the buffering capacity of coastal wetlands depends significantly on local wetland coverage 
and at-risk property value, as well as storm characteristics. Considering an ensemble of possible TCs9 for the NJ/
NY/CT coasts, they found that the buffering capacity of coastal wetlands in NJ/NY/CT coasts6 and Piermont7 
were able to provide higher buffering capacity (measured by percent reduction of potential structural loss) dur-
ing the 1% flood and wave event, than that during Sandy.

With accelerating SLR and potentially more intense storms, the average wave crest (total flood elevation 
including storm surge and wave effect) is expected to increase between now and 2100, leading to increased struc-
tural loss unless the wetland is sustained or even increased, and at-risk properties are reduced. Previous studies, 
however, did not consider the effect of climate change and wetland restoration on the buffering capacity of coastal 
wetlands. While there is currently large uncertainty on projected TC activity at local spatial scales10,11, SLR is 
expected to accelerate12–14 and hence increase the flood damage to residential structures. It was predicted15 that 
Piermont Marsh would be inundated by SLR in 2080, assuming a low sediment accretion rate. Moreover, manag-
ers of the Piermont Marsh have proposed a potential phased restoration plan to replace 40 acres of Phragmites 
in the Piermont Marsh with Typha from the nearby Iona Marsh between 2020 and 2025. This study examines 
the effects of climate change, a potential marsh restoration plan, and potential marsh change on the ecosystem 
service value of Piermont Marsh for reducing storm-induced flood damage.

Results
Maximum flood and significant wave height in Piermont during Sandy were simulated with and without the 
marsh7, SI Figs. 1, 2). While the two flood maps are comparable, the two wave maps are significantly different. 
Flood elevations simulated with and without the marsh are comparable, and flood elevation at the southern edge 
of the Village was about 99% of the flood elevation at the edge of the marsh in the Hudson River. On the other 
hand, with the marsh, wave height was 15-20 cm at the southern edge of the Village, compared to 60 cm at the 
marsh edge in the Hudson River due to rapid dissipation of the wave by the marsh within 150 m. Without the 

Figure 1.   (a) NJ/NY/CT coastal domain and Hurricane Sandy (October 2012) track (left) (ArcGIS basemap 
credit: Earthstar Geographics). (b) Piermont Village and Marsh (right) (ArcGIS basemap credit: Westchester 
County GIS, Maxar).
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marsh, significant wave height at the southern Village would have been more than 50 cm, barely dissipated from 
the 60 cm at the marsh’s edge. Thus, while the maximum flood elevations during the 1% annual chance flood 
and wave are slightly higher than those during Sandy, the 1% wave heights are noticeably (~ 50%) higher than 
those during Sandy. See Supplemental Information (SI) for a detailed explanation. For a detailed explanation of 
the 1% annual chance flood and wave, see SI.

Scenarios from 2020 to 2100 – considering TCs, SLR, and potential marsh restoration 
plan.  Table 1 lists six major scenarios considered for the Piermont area considering the effects of TCs, SLR, 
and marsh management plan. All scenarios used the TC ensemble (Fig. 2a) determined by the NASHM statisti-
cal hurricane model 9,11,16, which showed little projected change in TC activity on the US northeast through the 
2030s. SLR values (Fig. 2c) are based on the New York Panel of Climate Change predictions12, Chapter 3, p.83, 
Table 3.2). The mean middle-range values of 6″ and 18″ are adopted for 2025 and 2050. For 2100 the extreme 
value of 114″, which corresponds to NPCC’s Arctic Rapid Ice Melt (ARIM) scenario12, is used. In addition, a 
potential 3-phase marsh restoration plan to restore three areas totaling 40 acres (Fig. 2b) from current condition 
(CC) to Typha between 2020 and 2025 was considered17. Details of the TC ensemble, SLR values, and the marsh 
restoration plan are described in the Methods section.

1% Annual chance flood and waves from 2020 to 2100.  As shown in Fig. 3, the 1% annual chance 
flood in Piermont shows that the flood at the marsh edge is comparable to the flood at the south Village, indicat-
ing the marsh had little effect in buffering flood. Flood elevation would change little from 2020 to 2025, suggest-
ing that the proposed marsh restoration plan and the very mild SLR in 2025 would not impact the flood risk in 
the region. TCs remain the major cause of coastal flooding. Scenarios 4 and 5 show noticeably higher flood than 
the 2020–2025 period due to the significant (50th percentile) SLR value of 18″ (45 cm). More properties in the 
western Village would become inundated during a 1% event. Flood elevation for Scenario 4 (with fully restored 
Typha in the 40-acre area) and Scenario 5 (with current marsh condition) shows little difference, confirming 
that the modest marsh restoration plan would not change the Piermont Marsh buffering capacity. By 2100 (Sce-
nario 6), however, due to the extremely high (ARIM) SLR value and the complete inundation of the marsh15, the 
marsh would lose its buffering capacity. Many properties in the western Village and on the pier would be under 
6ft of floodwater.

The 1% annual chance wave maps of Piermont (Fig. 4) indicate that the marsh would buffer the Village from 
wave damage by quickly dissipating the waves at the marsh edge with approximately 100 m. The wave maps 
exhibit the same temporal trend, with slight differences among Scenarios 1,2,3 but a significant increase for 
Scenarios 4 and 5 in 2050 and a dramatic increase for Scenario 6 in 2100. The increasing 1% flood elevation and 
wave height indicate that structural loss in Piermont Village will increase in the twenty-first century.

Value of Piermont marsh for reducing flood‑related structural damage in Piermont Vil‑
lage.  Value of Piermont marsh during Sandy and 1% flood and wave.  SHE21b7 simulated the maximum 
flood and wave in Piermont during Superstorm Sandy with and without the Piermont Marsh and found the 
marsh reduced the total structural loss by USD 0.9 M (7.6% of the estimated loss of USD 11.9 M with current 
marsh). For the 1% annual chance flood and wave event, the marsh reduced the total loss by USD 2.2 M (11.34% 
of the loss USD 18.8 M with marsh). These estimates were based on the 2018 property values of Piermont Village. 
Here we estimate the value of the Piermont marsh by dividing the avoided loss of USD 0.9 M and USD 2.2 M 
by the total flooded area (1.4 km2) of the marsh18, resulting in USD 0.64/m2 and 1.57/m2 for Sandy and the 1% 
event, respectively.

As shown by SHE21a6, the value of coastal wetlands for reducing flood- and wave-induced structural loss 
depends highly on the storm characteristics and local wetland and property conditions. Currently, there is no 
consensus on the best way to represent the value of coastal wetlands for flood protection. Here we present the 
scenario-dependent marsh value in terms of several metrics: total structural loss (TSL, in USD based on 2017 
taxed property values), relative structural loss (RSL, in % of total property value), total avoided loss (TAL, as the 
difference between loss without marsh and loss with marsh), relative avoided loss (RAL, as TAL divided by the 
total property value), and unit marsh value (UMV, as TAL divided by the marsh area).

Table 1.   Coastal flood scenarios from 2020 to 2100.

Scenario Year SLR (in) SLR (cm)

Marsh 
restoration 
phase

Restoration area 
1 (Fig. 3b)

Restoration 
area 2

Restoration 
area 3

Other marsh 
areas

1 2020 0 0 1 No Marsh CC CC CC

2 2022 0 0 2 Low T No Marsh CC CC

3 2025 6 15 3 High Typha Low Typha No Marsh CC

4 2050 18 46 4 High Typha High Typha High Typha CC

5 2050 18 46 – CC CC CC CC

6 2100 114 290 – Marsh Lost Marsh Lost Marsh Lost Marsh Lost
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Value of Piermont marsh during Sandy and 1% flood and wave event from 2020 to 2100.  The value of Piermont 
marsh for each scenario listed in SI  Table  2, including Sandy, a rare “Black Swan” storm6, the 1% flooding, 
and the six scenarios are shown in Table 1 and plotted in Fig. 5. We also present the structural loss for several 
scenarios when the marsh is completely removed, including Sandy, Black Swan storm, and Scenario 5 in 2050. 
Scenario 6 represents the worst condition in that the marsh is entirely inundated by the marsh’s 2.89 m SLR and 
low accretion rate. Here we also include the results corresponding to a best-case Scenario 6, which assumes the 
high accretion rate of 12 mm/year and sufficient marsh growth to keep up with the extreme SLR.

Value of coastal wetlands in New Jersey.  Aggregating the zip code scale results6 to county scale, the median 
value of coastal wetlands in all NJ counties is found to be 0.15, 5.91, 5.33, 4.82 USD/m2 for Sandy, Black Swan, 1% 
flooding in 2020, and 1% flooding in 2100. respectively. The corresponding values for Ocean County, NJ are 2.34, 
2.55, 4.50, 2.05 USD/m2, respectively. These results show that the wetland value for flood protection depends on 
the TC, local property values, and wetland areas.

In comparison, the value of Piermont marsh is 0.85, 0.24, and 2.09 during Sandy, the Black Swan storm, and 
1% flood and wave in 2020, respectively. The value of the Piermont marsh for the 1% flood and wave is 3.4 in 
2050 and 2.79 in 2100.

Figure 2.   (a) Storm ensemble for NJ/NY/CT coasts predicted by the NASHM11 (upper left). (ArcGIS basemap 
credit: ESRI, HERE, Garmin, SafeGraph, FAO, METI/NASA, USPS, EPA, NPS). (b) Piermont Marsh with a 
3-phase restoration plan to restore Typha in the 40-acre area (upper right). (ArcGIS basemap credit: Westchester 
County GIS, Maxar). (c) SLR at Battery12 (lower left)).
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To explain the significant spatial variation in structural loss reduction by wetlands, we developed an ordinary 
least square regression model fitted with data for all coastal counties during four flood events and with and 
without wetlands. The flooded wetland area, total at-risk structural value, and total wave crest volume in each 
county were used as predictors to estimate the structural losses in the county (SI Table 3). The regression model 
(Fig. 6) had a significant correlation with R2 = 0.85 and p = 2.78E-25. Losses in a county increase with the total 
at-risk structural value and the total wave crest volume but decreased with flooded wetland area. The absolute 
value of the t-statistic informs us that the most important feature is the total at-risk structural value followed by 
the total wavecrest volume, and lastly, the flooded wetland area.

Figure 3.   1% Annual chance flood maps of Piermont, NY for the six scenarios shown in Table 1. Top panel—
Scenario 1,2,3 (left to right); lower panel—Scenario 4,5,6. (ArcGIS basemap credit: Westchester County GIS, 
Maxar).
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Discussion
Results show that Piermont marsh and coastal wetlands in NJ (on zip code scale) are highly dependent on the 
storm conditions (characterized by the total flood elevation or wave crest), local wetland condition, and at-
risk property value. The wetland value for Sandy and the Black Swan storm differed significantly, suggesting 
strong dependence of wetland’s value on storm characteristics. Therefore, it is more appropriate to consider an 
ensemble of storms instead of a single design storm for meaningful valuation of coastal wetlands. The 1% flood 
elevation and wave height at any location represent the elevation exceeded by hundreds of TCs that have char-
acteristics significantly different from Sandy or the Black Swan storm. During Sandy, due to the easterly peak 
wind, Piermont marsh could not dissipate surge but significantly dissipated the wave. However, during some 
storms in the ensemble, Piermont marsh could buffer the storm surge and the wave. Therefore, we use the 1% 

Figure 4.   1% Annual chance significant wave height maps for Piermont, NY for the six scenarios shown 
in Table 1. Top panel—Scenario 1,2,3 (left to right); lower panel—Scenario 4,5,6. (ArcGIS basemap credit: 
Westchester County GIS, Maxar).
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flood and wave as the benchmark condition for assessing the value of coastal wetlands in reducing flood- and 
wave-induced structural loss in a changing climate. The flood, wave, and structural losses associated with the 1% 
flood and wave increase over time. The 1% annual chance flood and wave event for 2020 may become a 10–20% 
annual chance event by 2100.

The study found that TCs will dominate the coastal flooding until 2050, when SLR takes over as the dominant 
driver. Thus, the marsh may be entirely inundated by the extreme SLR and lose its buffering capacity in 2100. 
However, recent findings of high accretion rate (> 10 mm/year) and continued growth associated with Phragmites 
marshes19–21 suggest that Piermont marsh could keep up with SLR and retain some buffering capacity. Therefore, 
the potential restoration plan to restore part of Piermont marsh with Typha during 2020–2025 would not affect 
the marsh’s buffering capacity.

Figure 5.   Total structural loss (blue bars), total avoided loss (magenta bars), and unit marsh value (orange 
circles) for scenarios are listed in Table 1.

Figure 6.   NJ county structural loss regression model. An ordinary least squared linear regression model. 
Constructed using the flooded wetland area, total at-risk structural value, and total wavecrest volume as 
predictors to estimate structural losses in zip-codes (R2 = 0.85, p = 2.78E-25).
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The Unit Marsh Value (UMV) of Piermont marsh is estimated to increase from $2.09/m2 in 2020 to $3.4/
m2 in 2050, due to a much more significant increase in TSL without the marsh than TSL with the marsh. For 
the best-case scenario in 2100, the Unit marsh value will remain at $2.79/m2. These values are lower than those 
for the coastal wetlands in New Jersey, estimated to be $5.33/m2 and $4.82/m2 for 2020 and 2100, respectively, 
due mainly to the higher property value in NJ. It should be noted that these estimated UMVs were based on the 
2017 taxed property values. Should the property values change significantly in the future, the marsh value will 
also change accordingly. For example, if the property values were to triple by 2050, the UMV should also triple.

Due to lack of consensus on the valuation of coastal wetlands for reducing flood- and wave-induced resi-
dential structural loss, we present our economic analysis in terms of several metrics which measure the value of 
coastal wetlands. As shown in the following Table 1, Relative Avoided Loss (RAL) was used by NAR171, LAT192, 
and SHE21a6, and SHE21b7. Marginal wetland value, which appears to be comparable to the UMV (Unit Marsh 
Value) of this study, was used by SC202. Notably, while NAR171, SHE21a6 and SHE21b7 used a dynamic surge 
model and surge-wave model, respectively, to simulate the structural losses with and without wetlands, LAT193 
and SC202 used linear regression analysis without any dynamic model results. The regression models of LAT193 
and SC202 were constructed solely based on historical data but were not shown to have predictive ability. More 
explanations are given in the following paragraph

The linear regression models of LAT193 and SC202 did not take into consideration that total flood area, 
flooded wetland area, and total at risk property value have interactions. For example, LAT193 suggested that 
the slope of the wetland width is the wetland value, while SC202 developed a formula to calculate the wetland 
value. However, the assumptions made by them were too simplistic because they calculated the wetland value by 
replacing the flooded wetland areas with zero but used the same total at risk property value and total flood area 
corresponding to “with wetlands” results. Moreover, SC202 performed log transformation on the predictors and 
the target of their regression in order to decrease the variability of the data and make the data to more closely 
resemble the normal distribution. However, the results of standard statistical tests achieved on log-transformed 
data are frequently not pertinent for the original, non-transformed data. As a result, these models fail to predict 
the correct total loss when replacing the total wetland area with zero.

We overcame the deficiencies of the regression models of LAT193 and SC202 by using validated dynamic 
model results to construct a regression model for prediction and inference purposes. Using the LAT193 and SC202 
regression models, without the support of dynamic modeling results, will result in massive uncertainty in their 
predicted wetland values, e.g., the marginal values of wetland estimated by SC202 for coastal counties in NJ and 
FL are 10–100 times of those predicted by our model. The more realistic values of coastal wetland for reducing 
flood- and wave-induced structural loss from our study can provide helpful information to coastal communities 
to develop coastal resiliency and wetland restoration plans.

Methods
A statistical tropical cyclone model: NASHM.  The North Atlantic Stochastic Hurricane Model 
(NASHM), in combination with sea-surface temperature (SST) projections from climate models, was used to 
estimate regional changes in US TC activity into the 2030s11. NASHM is trained on historical variations in TC 
characteristics with two SST indices: 1, global-tropical mean SST and 2, the difference between tropical North-
Atlantic SST and the rest of the global tropics, often referred to as “relative SST.” Testing confirms the model’s 
ability to reproduce historical US TC activity, as well as to make skillful predictions. When NASHM is driven 
by SST projections out to 2040, overall North Atlantic annual TC counts slightly increase, and the intensity 
distribution shifts to higher peak wind speeds. These increases are partially offset, however, by changing track 
patterns that reduce US east coast landfall probabilities per TC. As a result, projected changes in TC activity do 
not appear to significantly impact NY-region coastal flooding risk. Because of these projected modest changes 
in 2040 by NASHM, as well as the overall significant uncertainties in regional TC activity projections10, in this 
study, we assume the TC statistics remain unchanged between 2020 and 2100.

A Coupled Hydrodynamic‑Wave Model: CH3D‑SSMS.  CH3D-SSMS is an integrated storm surge 
modeling system22–24, incorporating a coastal surge model CH3D25,26 and a phase-averaged wave model SWAN27. 
CH3D-SSMS couples 2D/3D storm surge and wave models of coastal and basin-scale using a non-orthogonal 
curvilinear grid on the horizontal and a terrain-following sigma coordinate in the vertical for an accurate rep-
resentation of estuaries and coastal waters. The coupled CH3D-SWAN coastal models receive open boundary 
conditions from the basin-scale surge model (ADCIRC28 or CH3D) and wave model (WWIII)29. The governing 
model equations and surge-wave coupling mechanisms of CH3D-SSMS are described elsewhere22 hence will not 
be repeated here.

CH3D uses the Reynolds-averaged Navier–Stokes (RANS) equations to compute water elevation and current 
velocities and represent the vegetation-induced drag forces to the mean flow and turbulence (Lewellen and Sheng 
1980) by including extra profile drag DP and skin-friction drag DS , which depend on the profile area ( Af  ) and 
wetted area ( Aw ) in the momentum Eqs.7,23. In the vegetation-resolving SWAN model30, vegetation is treated as 
cylinder units, and the plant-induced forces (drag and inertia forces) are modelled by accounting for irregular 
waves and depth-varying bottom, i.e., a vertical layer schematization for representing vegetation structure and 
calculating the dissipation term in the spectral action balance Eq.31. The drag coefficient and vertical profiles of 
Af  and Aw vary with the vegetation types (Phragmites, Typha, and mangrove)7,24. The robustness of the coupled 
CH3D-SWAN model for simulating the effects of vegetation on flow and wave has been verified with numer-
ous laboratory and field experiments6,7,24. For simplicity and lack of detailed vegetation data in NJ, NY, and CT, 
SHE21a6 used the 2D vertically integrated version of CH3D.
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Regional scale and piermont scale model simulations.  The study involves a regional NJ/NY/CT 
domain (Fig. 1) represented by a high-resolution curvilinear grid consisting of 1461 by 2182 cells with 40–50 m 
resolution in NYC and about 20 m in the low-lying land area, such as lower-Manhattan, to resolve the local 
complex geographic features. The grid domain covers the coasts of New Jersey, New York, and Connecticut. It 
also includes the Hudson River from the New York Harbor to the Federal Dam at Troy. It extends from the con-
tinental shelf to elevations that are higher than the possible extent of flooding by storm surge.

The two-dimensional version of CH3D-SWAN was run to simulate the surge and wave throughout the 
regional domain for each TC. In addition, the time series of water level along the boundary of the Piermont 
domain was used to drive the high resolution (4-5 m horizontal resolution with eight vertical layers) CH3D-
SWAN model for the Piermont. Details of the regional scale study can be found in SHE21a6.

The Joint Probability Method with Optimal Sampling (JPM‑OS) statistical method.  Given the 
storm ensemble generated by the NASHM model described in Sect. 3.1 and shown in Fig. 3a, we used JPM-
OS32,33 to generate a set of optimal storms to represent all the possible storms described by the ensemble. We then 
simulated the 1% annual chance flood and significant wave height with and without the wetlands and produced 
the maps according to the following equations:

 Here, � is the mean annual rate for all storms on the site, fx(x) is the joint probability density function of the 
storm characteristics, and P is the conditional probability that a storm with specific characteristics x will cause 
a water level height or significant wave height above η . This integral is evaluated for every possible combination 
of storm characteristics. In practice, since the integral in Eq. (1) is not easily determined, it is usually estimated 
as a weighted sum of discrete storm parameters value.

Using the simulated coastal flood elevations for all the optimal storms, the probabilistic flood elevation 
and wave height at every grid cell of any desired return period, e.g., 100 years (1%) or 500 years (0.2%), can be 
calculated by the JPM-OS.

Economic analysis.  As a first step to assess the ecosystem service value of the Piermont Marsh in reduc-
ing property damage due to flood and waves during storms, we conducted a parcel-based economic analysis 
using the simulated inundation and waves along with the best available building footprint data34 and damage 
functions35. The height of the wave crest curve was used in regions where the depth limited controlling wave 
height HC was greater than 1.5 ft, while flood depth curve was used elsewhere. Here, wave crest (WC) is defined 
as:

Depending on the location of a property, different formulas with damage functions determined in the USACE 
study can be used to calculate the structural loss (SL). The total structural loss (TSL) is the sum of SL for all resi-
dential structures. The Relative Structural Loss (RSL) is the TAL as a percent of the total property value, which, 
in this study, is based on the 2017 taxed value of the properties.

To assess the value of coastal wetlands for reducing flood- and wave-induced structural loss, we introduce the 
following metrics: Total Avoided Loss (TAL), Relative Avoided Loss (RAL), and Unit Marsh Value (UML) for the 
Piermont Marsh for all scenarios. TAL is the difference between the TSL without marsh subtracted by the TSL 
with the marsh. RAL is the ratio between TAL and TSL with the marsh. Finally, unit Marsh Value is defined as 
the TAL divided by the total marsh area. Importantly, this study used the simulation results of dynamic models 
as input for the economic analysis, verified by comparison with the FEMA NFIP payout data in New Jersey6 
and Piermont Village7.

Schematics of the study.  This study focuses on the simulation of surge and wave in the Piermont Marsh 
and Village during 1% flood and wave events from 2020 to 2100. The overall study design is shown in Fig. 7. The 
three-dimensional vegetation-resolving CH3D-SWAN was used to simulate the surge and wave during Sandy 
and an ensemble of storms (predicted by the NASHM model) in a large regional NJ/NY/CT domain which 
includes the Piermont Marsh and Village. Model simulated water level along the boundary of the high-resolu-
tion Piermont domain was used to force the Piermont model. The simulated flood and wave in the Piermont 
domain were then used to conduct an economic analysis to estimate the structural loss of the residential prop-
erties. Simulations were conducted with the same storm ensemble but different SLR values involving different 
configurations of the Piermont marsh: 1) existing Phragmites-dominant Piermont Marsh, 2) Piermont Marsh 
removed, and 3) Phragmites replaced by Typha during three phases of the potential marsh restoration plan. These 
simulation results were used for the economic analysis described in the main body of the paper. Details of the 
regional-scale simulation and model results can be found in SHE21a6.

(1)P[ηmax > η] = � ∫ ... ∫ fx(x)P[η(x) > η]dx

(2)P[ηmax > η] =

n∑

i=1

�iP[η(xi) > η]

(3)WC = 0.7 ∗Hc + d
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