
1 

Recommendations for the National Estuarine Research Reserve System-Wide Monitoring 
Program Regarding the YSI EXO Total Algae Sensor 

 
April 2022 

 
Written by Nikki Dix, Hannah Ramage, Jacob Cianci-Gaskill, Shannon Dunnigan, J. Silas Tanner, Kim 

Cressman, Steven McMurray, Yoshimi Rii, Rachel Guy, Rikke Jeppesen, Erik Smith 
 

Funded by NERRS Science Collaborative Catalyst Grant #NA19NOS4190058 
Refining techniques for high-frequency monitoring of chlorophyll a in the NERRS  

 
Project Team  
Project Lead: 

Nikki Dix1* 
 

Co-Technical Leads: 
Erik Smith2, J. Silas Tanner1 

 
Data Manager: 

Shannon Dunnigan1 
 

Team Members: 
Rikke Jeppesen3, Kimberly Cressman4, Cassie Porter4, Tom Gregory5, Chris Peter5, Lara Martin5, Yoshimi 

Rii6, Hannah Ramage7, Cammie Hyatt8, Kelley Savage8, Ed Buskey8, Steven McMurray9, Jacob Cianci-
Gaskill9, Sebastian Mejia9, Sylvia Yang10, Nicole Burnett10, Jude Apple10, Rachel Guy11, Thompson Rose11, 

Jeremy Miller12 

 
1Guana Tolomato Matanzas NERR, 2North Inlet-Winyah Bay NERR, 3Elkhorn Slough NERR, 4Grand Bay 

NERR, 5Great Bay NERR, 6He’eia NERR, 7Lake Superior NERR, 8Mission-Aransas NERR, 9Old Woman Creek 
NERR, 10Padilla Bay NERR, 11Sapelo Island NERR, 12Wells NERR;  

*Corresponding Author nikki.dix@floridadep.gov 
 
 
Suggested Citation Format 
Dix, N., H. Ramage, J. Cianci-Gaskill, S. Dunnigan, J.S. Tanner, K. Cressman, S. McMurray, Y. Rii, R. Guy, R. 
Jeppesen, E. Smith. 2022. Recommendations for the National Estuarine Research Reserve System-Wide 
Monitoring Program regarding the YSI EXO Total Algae sensor. Technical Report: 35 pp. 
 
Project Resources 
https://nerrssciencecollaborative.org/project/Dix20  
  

https://nerrssciencecollaborative.org/project/Dix20


2 

Executive Summary 
 
Concentrations of the photosynthetic pigment chlorophyll a are used as a proxy for 

phytoplankton biomass by estuarine scientists and managers in order to study eutrophication, food web 
dynamics, and harmful algal blooms. Traditionally, chlorophyll has been measured by filtering a water 
sample and then extracting pigments from the filter in a laboratory, and this practice is still employed by 
the NERRS in monthly grab samples. However, these monthly measurements are not sufficient for 
tracking plankton dynamics, which fluctuate hourly. Recent sensor technology development allows high-
frequency, in situ measurement of chlorophyll on the same YSI EXO sondes used in the NERRS System-
Wide Monitoring Program (SWMP). While in situ measurements are related to extracted measurements, 
environmental variations create inconsistencies between the two. Before this project, the exact nature 
of these inconsistencies had not been tested for the EXO sensors, and SWMP practitioners were 
requesting this information so they could respond to local and national needs for algal bloom research.  

Twelve biogeochemically diverse reserves participated in a one-year study funded by the NERRS 
Science Collaborative. Protocols for calibration and data management were standardized and both 
chlorophyll methods (extractions and in situ sensor readings) were conducted at various frequencies for 
approximately one year. Keeping technician experiences with preliminary sensor deployments and 
results from previous studies in mind, one objective of this project was to identify possible sensor 
interferences and develop standardized empirical correction procedures. A second objective was to test 
how accurately extracted CHL-A (μg/L) could be predicted from the suite of YSI EXO sensors. While there 
is value in the YSI EXO Total Algae (TAL) sensor’s relative fluorescence units (RFU) for short-term or 
single-site chlorophyll measurements, reliable predictions of extracted CHL-A (μg/L) would provide a 
standard measure for comparison between sites and for comparison with historic data.  

The effect of temperature on in situ fluorescence, as well as the potential for turbidity and 
FDOM to interfere with fluorescence, was investigated at select reserves. An EXO2 was submerged in a 
tank of estuarine water and set to record fluorescence while temperature, turbidity, or FDOM was 
manipulated. At the beginning and end of each interference test, an aliquot of water was withdrawn 
from the tank for extracted CHL-A determination. Participating reserves then used field- and lab-based 
approaches to compare this extracted CHL-A measurement to in situ CHL-A fluorescence in natural 
water samples. Both approaches ensured that the same water mass was sampled in each method. 
Although the sampling frequency and the number of samples collected for both approaches were not 
standardized across reserves, each reserve captured as much environmental variability as possible, for a 
total of 1255 comparison samples. The ability to predict extracted CHL-A (μg/L) from in situ sensor data 
was explored using linear regression models of comparison data at two spatial scales, national and site-
specific. 

Overall, sensor fluorescence was related to extracted chlorophyll measurements, but the 
strength and drivers of the relationship varied by site. Temperature, turbidity, and FDOM all influenced 
sensor readings independent of phytoplankton biomass. Hence, considerations for in situ sensor 
implementation depend on the chlorophyll monitoring goals of individual stations.  
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Based on our findings, we recommend the following for the NERR SWMP: 
 

● Implement high-frequency, in situ chlorophyll monitoring where appropriate and where capacity 
exists.  

● Acknowledge the in situ sensor is not a direct substitute for extractive chlorophyll analysis. 
● To save time and provide the most accurate reflection of what the sensor detects, calibrate 

sensors to relative fluorescence units (RFU) only; integrate RFU into the SWMP manual; and, 
update CDMO submission requirements accordingly. This is consistent with previous study 
recommendations and the YSI EXO TAL manual.  

● Calibrate the YSI EXO TAL sensor using a revised SOP (see draft). We have also drafted a SOP for 
calibrating the EXO FDOM sensor according to the YSI manual. 

● The SWMP Data Management Committee develops standard metadata language and guidance 
on QAQC documentation for chlorophyll sensor deployment. Technician training could be 
improved with a “tips and tricks” document, supply list, and instructional videos. 
 
With a proper understanding of their respective strengths and limitations, both in situ and 

extracted metrics can complement the NERRS mission. Extracted measurements contribute to our 
understanding of long-term change because they can be compared with historical data. High-frequency, 
in situ measurements are useful for a short-term variability, allowing us to examine, for example, how 
chlorophyll changes with tides, from day to night, seasonally, and after storms. The simultaneous use of 
both approaches adds value to Reserves as reference sites and as living laboratories for research on 
topics ranging from harmful algal blooms to ecosystem metabolism. High frequency, in situ chlorophyll 
data can also support management, education, and aquaculture, particularly when the monitoring 
stations are telemetered. Near real-time chlorophyll data can be used to detect algal blooms, assess 
food availability for aquaculturists’ filter feeder crops, and educate students on data literacy, primary 
production, and food web dynamics. 
 
  

https://drive.google.com/file/d/12ULi51ASm4Lh7FbjddJCAYw8s9iQeYsi/view?usp=sharing
https://drive.google.com/file/d/1mCPm06ZHKzZJbnrOFFIUjfuSDYwFw52m/view?usp=sharing
https://drive.google.com/file/d/1mCPm06ZHKzZJbnrOFFIUjfuSDYwFw52m/view?usp=sharing
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Introduction 
 

The National Estuarine Research Reserve System (NERRS) is an integrated network of estuaries 
representing a wide variety of biogeographic and environmental conditions. The NERRS has a long 
history of using standard monitoring methods to promote national syntheses and advance science-
based coastal management. The hallmark System-Wide Monitoring Program (SWMP) was established in 
1994 to track short-term variability and long-term change in all of the estuarine reserves. In 2002, 
chlorophyll a (CHL-A, a photosynthetic pigment used as an indicator of phytoplankton biomass) was 
added as a required parameter for monitoring due to increasing concerns about eutrophication (Kennish 
2004). Since then, long-term CHL-A datasets produced by the SWMP have proven valuable for 
investigating biogeochemical patterns (Buzzelli et al. 2004), autotrophic and heterotrophic planktonic 
processes (Apple et al. 2008), mechanisms regulating phytoplankton biomass (Dix et al. 2013), effects of 
eutrophication (Jeppesen et al. 2018), and ocean acidification (Baumann and Smith 2018). CHL-A is also 
a crucial parameter for resource managers and regulatory agencies when defining numeric water quality 
standards and assessing impairments based on the Clean Water Act. 

When CHL-A measurements were introduced into the SWMP, it was determined that 
measurements would be conducted with in vitro methods. Measuring chlorophyll via in vitro extraction 
involves collecting a water sample, filtering a known volume, steeping the filter in solvent to extract 
chlorophyll from the cells, measuring the amount of chlorophyll, and providing an estimate of the total 
amount of chlorophyll in the water sample (Arar and Collins 1997). Since in vitro measurements are the 
traditional, widely accepted methods for estimating phytoplankton biomass in water, monthly in vitro 
measurements are the current practice in the NERRS SWMP. However, monthly measurements are not 
sufficient for tracking plankton dynamics, which can fluctuate hourly (Agawin et al. 2000). Incorporating 
in situ sensors capable of monitoring chlorophyll would increase the frequency of chlorophyll data 
collection from once a month to every 15 minutes, greatly enhancing the value of SWMPs,  

Field-deployable chlorophyll sensors have been available for decades. They measure chlorophyll 
by emitting light, exciting the chlorophyll molecules inside cells (in vivo), and measuring the resulting 
fluorescence. Chlorophyll concentrations are measured by these sensors as relative fluorescence units 
(RFU) but can also be reported in the more traditional metric of μg/L by using an internal YSI proprietary 
conversion. To date, these sensors have not been incorporated into the SWMP, as past studies showed 
sensor results to be inconsistent across reserves and thus not reliable as a quantitative measure of 
chlorophyll (Lohrer 2000). With the transition to YSI’s EXO datasonde in the SWMP and improvements in 
chlorophyll sensor detection limits and wavelength resolution, SWMP staff around the country began 
purchasing and deploying YSI EXO Total Algae (TAL) sensors.  

Of the 55 attendees at the 2021 NERRS Technician Training Workshop, 63% had experience 
using these TAL sensors. According to attendees, the biggest potential impediments to deploying TAL 
sensors were cost, unknown sensor stability/reliability, result interpretation needs, and time 
commitment. Additionally, some reserve technicians had previously observed improbably high values of 
sensor fluorescence and expressed concerns about potential interferences. These potential 
interferences, caused by concentrations of light-absorbing or light-scattering material present during 
field measurements, are well documented among optical sensors, including chlorophyll fluorescence 
sensors like the EXO TAL (Cremella et al. 2018; Downing et al. 2012). The optical detection of fluorescent 
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material is further complicated by the fact that fluorescence intensity is temperature sensitive (Watras 
et al. 2017).  

The ability of an early YSI chlorophyll fluorescence sensor (part of the 6-series line of YSI data 
sondes) to provide standardized measures of CHL-A across the range of water types represented within 
SWMP was the subject of a NERRS cross-system assessment in the late 1990s (Lohrer 2000). At the time, 
difficulties arose with standardizing for potential interfering substances and variable relationships 
between measured in situ fluorescence and extracted CHL-A concentrations across participating 
reserves. As a result, the decision was made to not recommend the inclusion of the YSI 6025 chlorophyll 
probe as a core parameter of SWMP water quality monitoring. However, given recent advances in 
optical sensor technology and guidance on assessing and potentially correcting for sensor interferences, 
as discussed above, a reassessment of the use of field-deployable chlorophyll sensors is clearly 
warranted.  
 The NERR system enables sensor performance to be evaluated in a novel way. Many current 
studies on in situ sensor performance are conducted at only a handful of sites (Kuha et al. 2020), over 
the course of only one season (Proctor and Roesler 2010), or in only a few habitat types (Xing et al. 
2017). The NERR system is uniquely positioned to expand the conditions under which these in situ 
sensors can be assessed due to both the large geographic area covered by the reserves and the 
standardized protocols of the SWMP. SWMP data are publicly available in near-real time and are 
therefore well situated to be used as early detection of environmental stressors. High-frequency, in situ 
CHL-A measured as part of SWMP could leverage existing SWMP infrastructure and processes and 
increase the utility of SWMP data for stakeholders and partners.  

The purpose of this project was to assess the YSI EXO TAL sensor performance and make 
recommendations for the NERRS regarding inclusion of high-frequency, in situ CHL-A measurements in 
the SWMP. Twelve biogeochemically diverse reserves (Fig. 1) participated in a one-year study funded by 
the NERRS Science Collaborative. Protocols for calibration and data management were standardized, 
and both chlorophyll methods (in vitro extractions and in vivo sensor readings) were conducted at 
various frequencies for approximately one year. Given technicians’ past experiences with preliminary 
sensor deployments and the results of previous studies, the first objective of this project was to identify 
how temperature, turbidity, and FDOM interfere affect CHL-A fluorescence measurements and develop 
standardized empirical correction procedures. The second objective was to determine how to best 
predict extracted CHL-A (μg/L) using YSI EXO sensors. While there is value in the TAL sensor’s relative 
fluorescence units (RFU) for short-term or single-site chlorophyll measurements, reliable predictions of 
CHL-A (μg/L) would provide a standard measure to compare among sites and with historic data 
produced by in vitro techniques. Specific research questions were as follows: 

1) How do temperature, turbidity, and FDOM interfere with CHL-A fluorescence (RFU) 
measurements taken by the YSI EXO TAL sensor?  

2) How can we best predict extracted CHL-A (μg/L) using the suite of YSI EXO sensors? 
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Figure 1. Research reserves that participated in the study: Lake Superior (LKS), Old Woman Creek 
(OWC), Wells (WEL), Great Bay (GRB), North Inlet-Winyah Bay (NIW), Sapelo Island (SAP), Guana 
Tolomato Matanzas (GTM), Grand Bay (GND), Mission-Aransas (MAR), Elkhorn Slough (ELK), Padilla Bay 
(PDB), and He’eia (HEE). 
 
Methods 
 
Sensor Calibration 

YSI EXO Total Algae Sensors were calibrated in units of μg/L using a two-point calibration with DI 
water and a rhodamine WT dye standard, as described by current NERR SWMP SOPs. Sensors were 
similarly calibrated in RFU, as recommended in the latest version of the EXO manual. For each 
calibration, a separate 625 μg/L rhodamine dye standard was prepared by diluting a concentrated (125 
mg/L) stock solution with deionized water. These standards were used for each calibration within 24 
hours.  

 
CHL-A Extraction 

To achieve cell disruption and shortened extraction time, extracted CHL-A (μg/L) was quantified 
in a darkened laboratory following EPA method 445.0 minus the use of grinding. Samples were briefly 
filtered using a GF/F filter under low (< 6 Hg) pressure, during which the volume of each sample filtered 
was noted until color appeared on the filter. Filters were then folded, transferred to a scintillation vial or 
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test tube with a screw top, and frozen at -20°C for 24 hours in order to fracture cells. A known volume of 
90% aqueous reagent-grade acetone was subsequently added to each vial, which were then gently 
agitated and placed in the freezer at -20°C for a 24- to 48-hour steeping period. Samples were gently 
agitated for a second time during this steeping period, after which they were inverted to resuspend any 
chlorophyll that may have settled. Once the samples had returned to ambient temperature, In vitro 
fluorescence was quantified on a fluorometer equipped with narrow band-pass filters using the non-
acidification technique (Welschmeyer 1994).  
 
Case Studies 
 Approximately one year of in situ CHL-A (μg/L) data measured in fifteen-minute increments and 
extracted CHL-A (μg/L) data measured montly were plotted for three reserve sites in order to illustrate 
the data characteristics produced by each method. Basic summary statistics were calculated (i.e., 
quantity, means, minima, maxima, and variation) for comparison. 
 
Laboratory Assessments of Sensor Interferences and Corrections 
 
Interference experiments 

The effect of temperature on in situ fluorescence, as well as the potential for turbidity and 
FDOM to interfere with fluorescence, was investigated at select reserves (Table 1). For all experiments, a 
large volume (10 - 20 L) of natural water was sampled from a reserve SWMP site, returned to the lab, 
and transferred to a darkened vessel sitting atop a magnetic stirring hot plate in order to homogenize 
the sample volume. An EXO2 calibrated according to NERRS protocols (except for having a central wiper) 
was then submerged in the tank, with the rotation of the stir bar adjusted to avoid a vortex. The EXO2 
was set to record fluorescence at the highest possible sampling frequency (1-2 sec) while temperature, 
turbidity, or FDOM was manipulated (Table 1). At the beginning and end of each interference test, an 
aliquot of water was withdrawn from the tank for extracted CHL-A determination, as previously 
described.  
 
Table 1. Reserves that conducted experiments investigating potential effects of temperature, turbidity, 
and FDOM on in situ fluorescence measured by the EXO TAL sensor: Guana Tolomato Matanzas (GTM), 
He’eia (HEE), Lake Superior (LKS), North Inlet-Winyah Bay (NIW), Old Woman Creek (OWC), and Padilla 
Bay (PDB). 

Reserve Temperature Turbidity FDOM 

GTM X X X 

HEE X X  

LKS   X 

NIW X X X 

OWC   X 

PDB X   
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Temperature  
Potential temperature quenching was investigated following the protocols of Watras et al. 

(2017). Natural water (10-20 L) sampled from a reserve SWMP site was diluted with filtered (0.2 μm) 
sample water to four different concentrations of CHL-A (100, 50, 25, and 0% of ambient) in a darkened 
laboratory. Samples were collected at times and locations with high anticipated CHL-A concentrations in 
order to enable examination of potential quenching over a maximized range of CHL-A concentrations. 
After allowing water samples to acclimate to ∼ 4 °C in an ice bath, each dilution was transferred to a 
darkened vessel atop a hot plate. Temperature and CHL-A fluorescence were then continuously 
measured with a submerged EXO2 sonde while the samples gradually warmed to approximately 30 °C 
over the course of roughly one hour.  

Reserve-specific temperature corrections were derived for each of the four participating 
Reserves using the equations developed by Watras et al. (2017) to standardize fluorescence intensity to 
a reference temperature of 20 °C. Each Reserve’s temperature correction was then evaluated by 
applying it to lab-based comparison data (methods below) and assessing whether it improved the 
modeled relationship between extracted CHL-A (μg/L) and in situ CHL-A (RFU). To assess the feasibility 
of a future system-wide temperature correction, a universal temperature correction based on the 
average of all trials across four Reserve’s was applied to all lab-based comparison data.  
 
Turbidity  

The effect of turbidity on in situ CHL-A fluorescence was investigated following the general 
approaches used by Downing et al. (2012) for FDOM sensor assessment. Natural water sampled from a 
reserve site with naturally low turbidity was transferred to a darkened vessel in the lab and stirred at 
low speed. Aliquots of a turbidity standard, derived by combusting (450 °C for four hours) and 
homogenizing marsh mud collected in bulk from the North Inlet estuary, were then serially added to the 
tank every five minutes until turbidity reached approximately 1000 FNU. During this addition, a 
calibrated EXO2 sonde continuously measured turbidity and CHL-A fluorescence. The turbidity standard 
had a grain size distribution of 15.6 % clay, 42.7 % silt, and 41.7 % sand (as determined on a Beckman 
Coulter particle size analyzer). The percentage of the TAL sensor’s RFU signal that was attenuated by 
turbidity was calculated following the example of Downing et al. (2012) to assess attenuation 
differences among sites and trials.   
 
FDOM  
 The effect of FDOM on in situ fluorescence was investigated in a similar manner as Downing et 
al. (2012). Natural water from a reserve site that contained a measured amount of CHL-A was 
transferred to a darkened tank in the lab and stirred at low speed. Aliquots of a concentrated FDOM 
surrogate were then serially added to the tank every five minutes until FDOM reached 120-200 qsu, 
during which a calibrated EXO2 sonde continuously measured FDOM, turbidity, and CHL-A fluorescence. 
Reserves also performed trials in a DI water matrix. Reserves uniquely created their FDOM surrogate 
standards by collecting local ambient water naturally high in FDOM, filtering it through a 0.2-μm filter to 
remove chlorophyll-containing cells, and concentrating it by a factor of five to ten using a heated stir 
plate (80 °C).  

OWC conducted six trials using an FDOM surrogate standard derived from Old Woman Creek. 
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Three trials were conducted in a deionized (DI) water matrix, and three in a Lake Erie ambient water 
matrix. NIW conducted one trial in a DI water matrix, two in a Crab Haul Creek ambient water matrix, 
and three using a FDOM surrogate standard derived from a forested wetland that drains into Crab Haul 
Creek in North Inlet. LKS conducted one trial in a DI matrix, another in a St. Louis River estuary matrix, 
and two trials with a FDOM surrogate standard derived from the St. Louis River Headwaters. GTM 
conducted two trials, one with a Pellicer Creek derived FDOM surrogate standard and one with a humic 
acid standard (Sigma Aldridge), both added to a Tolomato River ambient water matrix. Dissolved organic 
matter concentrations and light absorption of FDOM surrogate standards from GTM (Pellicer Creek), 
NIW (Crab Haul Creek headwater wetland), LKS (St. Louis River Headwaters), and OWC (Old Woman 
Creek) were assessed (Table 2) to provide context for results.   
 
Table 2. Final concentration and light absorption of FDOM surrogates used in interference experiments.  
North Inlet-Winyah Bay (NIW), Lake Superior (LKS), Guana Tolomato Matanzas (GTM), and Old Woman 
Creek (OWC). 

Reserve DOC (mg L-1) Abs @ 355 nm (m-1) Abs/DOC  

NIW 345.1 1485.9 4.3 

LKS 216.4 378.9 1.8 

GTM 79.1 177.0 2.2 

OWC1 75.4 75.4 1.0 

OWC2 95.8 144.7 1.5 

 
Predicting Extracted CHL-A (μg/L) from In Situ CHL-A (RFU) 
 
Sampling design 

Two approaches were used by reserves to compare in situ CHL-A fluorescence to extracted CHL-
A fluorescence for natural water samples. Both approaches were designed to ensure that their methods 
sampled the same water mass. First, simultaneous paired sampling was conducted by collecting discrete 
samples immediately adjacent to EXO2 sondes deployed in the field (field-based samples). For the 
second approach, a large volume (10-20 L) of natural water was sampled from a reserve SWMP site, 
returned to the lab, and transferred to a darkened mixing tank sitting atop a magnetic stir plate to 
homogenize the sample volume. An EXO2 was then submerged in the tank, and the rotation speed of 
the stir bar was set to avoid a vortex. The EXO2 was set to record CHL-A fluorescence at the highest 
possible sampling frequency (one to two seconds), and, after approximately five minutes of acclimation, 
an aliquot was withdrawn from the tank for extracted CHL-A determination.  
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For both field- and laboratory-based sampling, sondes were equipped with the full suite of 
required SWMP sensors, plus FDOM, to provide ancillary data for cross-system analysis, as well as data 
potentially necessary for CHL-A fluorescence a posteriori corrections. Water samples for extracted CHL-A 
determination were stored at 4°C in the dark and processed within twelve hours of the collection as 
described above. For every batch analysis or every 24 samples, a deionized water sample was included 
as a lab blank to identify potential contamination for both field- and lab-based samples.  

The sampling frequency and the number of samples collected for both approaches were not 
standardized across reserves (Table 3), but each reserve attempted to capture as much environmental 
variability as possible. 
 
Table 3. Site characteristics, the number of field and laboratory samples from each site, and project 
totals. Elkhorn Slough (ELK), Grand Bay (GND), Great Bay (GRB), Guana Tolomato Matanzas (GTM), 
He’eia (HEE), Lake Superior (LKS), Mission-Aransas (MAR), North Inlet-Winyah Bay (NIW), Old Woman 
Creek (OWC), Padilla Bay (PDB), Sapelo Island (SAP), and Wells (WEL). 

Reserve Site Name Location Salinity 
Range 

Average 
Depth 
(m) 

Tidal 
Range 
(m) 

# Field-
Based 
Samples 

# Lab-
Based 
Samples 

ELK South 
Marsh 

36.81806,  
-121.73940 

28-36 0.3 3.4 119 0 

GND Bangs Lake 30.35712,  
-88.46299 

4-32 0.9 0.5 11 10 

GRB Adams 
Point 

43.09208,  
-70.86428 

10-32 2.5 3.0 34 9 

GRB Oyster 
River 

43.13389,  
-70.91111  

0-33 1.7 3.0 0 2 

GRB Squamscott 
River 

43.04167,  
-70.92222 

0-32 1.9 3.0 24 5 

GRB Lamprey 
River 

43.08000, 
-70.93444 

0-31 1.8 3.0 65 0 

GRB Great Bay 
East 

43.06179,  
-70.85376 

0-32 1.6 2.9 0 2 

GRB Adams 
Point Marsh 

43.09208, 
-70.86428  

Un-
known 

0.3 0.5 0 1 

GRB Upper Little 
Bay 

43.10738,  
-70.86337 

7-32 3.9 3.0 0 1 

GTM Pellicer 
Creek 

29.66694,  
-81.2575 

0-34 1.3 0.5 144 31 
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Table 3 (continued). 

Reserve Site Name Location Salinity 
Range 

Average 
Depth 
(m) 

Tidal 
Range 
(m) 

# Field-
Based 
Samples 

# Lab-
Based 
Samples 

HEE Kaho'okele 21.43582,  
-157.80524 

27-35 1.1 0.7 84 28 

HEE Wai 2 21.43731,  
-157.81093 

0-34 0.4 0.7  0 4 

LKS Barker’s 
Island 

46.721772, 
-92.06352 

0.1-0.2 3.0 NA 58 77 

MAR Ship 
Channel 

27.83818,  
-97.05252 

18-37 6.1 1.0 0 18 

NIW Oyster 
Landing 
(Crab Haul 
Creek) 

33.34944,  
-79.18889 

0-37 2.0 1.4 0 65 

NIW Winyah Bay 
Surface 

33.30944,  
-79.28861 

0-25 5.0 1.1 72 0 

OWC Wetland 
Mouth 

41.22570,  
-82.30530 

0.1-0.9 0.5 0.04 130 0 

PDB Gong 48.5575,  
-122.5725 

23-32 18.0 2.4 0 
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PDB Bayview 48.49614,  
-122.50211 

23-32 1.5 2.4 96 10 

SAP Lighthouse 
Creek 

31.39728,  
-81.28156 

18-29 Un-
known 

2.1 0 46 

WEL Inlet 43.32025,  
-70.56347 

16-33 3.5 4.7 96 0 

Total      933 322 
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Model development and selection 
 The ability to predict extracted CHL-A (μg/L) from in situ sensor data was explored using linear 
regression models. Models were created to describe relationships between  

1) extracted CHL-A (μg/L) and in situ CHL-A (RFU) only; 
2) extracted CHL-A (μg/L) and in situ CHL-A (RFU) plus FDOM, temperature, and turbidity (including 

all interactions); and, 
3) extracted CHL-A (μg/L) and in situ CHL-A (RFU) plus temperature and turbidity (including all 

interactions). 
The second and third set of models included “reserve” and “season” as fixed effects. The third set of 
models excluded FDOM to assess its value in predicting extracted CHL-A (μg/L). FDOM is currently not 
required in the SWMP, as purchasing FDOM sensors is a significant expense. 

These three relationships were explored at two spatial scales, national and site-specific. National 
models were created using data from  

1) all comparison tests (field- and lab-based) at all sites (n = 1076) and 
2) only lab-based tests at all sites (n = 311). 

Site-specific models were created with data from 
1) all comparison tests (field- and lab-based) at that site and 
2) only lab-based tests at that site. 

Results specific to lab-based comparisons were of interest because the conditions were more controlled 
than in field-based comparisons.  

Prior to analysis, observations missing any of the model input variables were removed and a 
correlation matrix was examined. No strong correlations among predictor variables were observed. 
Residuals were funnel shaped (more variable at higher chlorophyll concentrations), so the response 
variable (extracted CHL-A) was square-root transformed. 

Model selection was performed on the full model with chlorophyll, temperature, turbidity, 
FDOM, and their interactions. The ‘best’ model from that subset was determined by lowest corrected 
Akaike Information Criterion (AICc). There may have been multiple models within two AICc of the top 
model (Burnham and Anderson 2002), but those were disregarded. If at least two seasons were present, 
the season was included in the model; otherwise, it was not. 
 The model with the lowest AICc was compared to (1) models with in situ CHL-A only and (2) 
models without FDOM by comparing model fit (R2) and prediction errors based on either 10-fold cross-
validation (national models) or leave-one-out cross-validation (site-specific models). Prediction error, 
after predictions were back-transformed to original units, was calculated as symmetric Median Absolute 
Percentage Error (Hyndman and Koehler 2006). 
 
Results and Discussion 
 
Case Study Comparisons of Data Characteristics 

Three time series of fifteen-minute in situ CHL-A (μg/L) data and monthly extracted CHL-A (μg/L) 
data collected for the SWMP illustrate the data characteristics produced by each method (Fig. 2). A 
fifteen-minute data collection frequency provides approximately 3,000 data points per month and 
captures more variability than monthly discrete sample collection (Table 4).  
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Figure 2. In situ chlorophyll a (μg/L) from the EXO2 sondes (gray open circles) and chlorophyll a (μg/L) 
from extracted discrete samples (black asterisks and closed circles). 
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Table 4. Data characteristics from Elkhorn Slough (ELK), Guana Tolomato Matanzas (GTM), and Old 
Woman Creek (OWC) reserve case studies.  

Reserve (Site) Date Range 15-min CHL-A  diel CHL-A monthly CHL-A  

ELK (South Marsh) 01/12/2021 - 
09/15/2021 

Mean = 7.5 μg/L  
N = 23726 
SD = 6.2 μg/L 

Mean = 10.9 μg/L  
N =119  
SD = 7.3 μg/L 

Mean = 7.9 μg/L  
N = 9 
SD =4.8 μg/L 

GTM (Pellicer Creek) 01/01/2020 - 
12/31/2020 

Mean = 15.2 μg/L  
N = 32660 
SD = 6.6 μg/L 

Mean = 8.2 μg/L  
N = 106 
SD = 7.1 μg/L 

Mean = 9.8 μg/L  
N = 12 
SD = 8.7 μg/L 

OWC (Wetland Mouth) 01/01/2021 - 
11/02/2021 

Mean = 29.2 μg/L  
N = 29265 
SD = 26.3 μg/L 

Mean = 18.6 μg/L  
N = 164 
SD = 13.5 μg/L 

Mean = 34.9 μg/L  
N = 9 
SD = 18.1 μg/L 

 
Laboratory Assessments of Interferences and Corrections 
 
Temperature 

Even though YSI has a temperature correction on the TAL sensor, we observed temperature 
quenching in experimental trials (Fig. 3). The effect of temperature quenching was somewhat less when 
CHL-A was low (Table 5).  

Using an average slope from all sites to correct the total CHL-A (RFU) across all Reserves did not  
improve model fit or prediction (results not shown). More trials would be necessary to get a more 
accurate average, but regardless, the rho values were remarkably similar across sites (Table 5) and were 
notably close to the rho values derived from other sensors (Watras et al. 2007). Even though model fit 
and prediction error did not improve much, the corrections applied did adjust CHL-A (RFU) values 
significantly when there was a large temperature range.  

In particular, temperature correction noticeably modified the slope between CHL-A (RFU) and 
extracted CHL-A (μg/L), especially for sites that experienced high variability in temperature (e.g., NIW, 
typical annual range = 8 - 34 °C; Fig. 4). Therefore, temperature corrections could improve the accuracy 
of the sensor’s CHL-A (RFU) output, even if the corrections do not improve the amount of variation 
described by the predictive model.  

Because all SWMP stations collect temperature data, it is feasible for any Reserve to make a 
site-specific temperature correction by replicating the methods employed here. This correction would 
be most needed at SWMP stations that experience high temperature variability and high chlorophyll 
concentrations. However, this dataset does not allow us to create a “NERRS-wide” temperature 
correction because the short project period did not allow sufficient time for replication. These trials 
were conducted with ambient water from different SWMP sites, so other sources of interference are 
possible. For example, studies have shown that different species of algae/bacteria have varying 
temperature-quenching effects (Watras et al. 2017). However, unlike CHL-A (RFU) responses to FDOM 
and turbidity (discussed below), responses to temperature were fairly consistent across different sites, 
raising the possibility of a universal correction factor. Hence, we recommend more trials be conducted 



15 

across the system throughout the year to obtain multiple species compositions and to establish a 
system-wide temperature ρ. We expect the standard deviation to improve with more replication.  
 

 
 
Figure 3. Example from Winyah Bay (North Inlet-Winyah Bay NERR) of the temperature-quenching effect 
on chlorophyll fluorescence as measured by the TAL sensor (A) and how it can be corrected (B) using Eq. 
1 from Watras et al. (2017) with a standard reference temperature of 20°C.  
 
Table 5. Temperature trial results at Guana Tolomato Matanzas (GTM), North Inlet-Winyah Bay (NIW), 
and Heʻeia (HEE) reserves; the waterbody name where the sample was collected (Matrix); the extracted 
CHL-A concentration in the matrix water at the beginning of the experiment (Matrix CHL-A); and the 
number of trials (n). 

Reserve Matrix  Date Matrix CHL-A 
(µg/L) 

n Mean (± SD) Temperature 
Coefficient (ρ) (°C-1)   

GTM Pellicer 
Creek 

07/08/2021 5.48 3 -0.0142 (± 0.0064) 

NIW Crab Haul 
Creek  

08/04/2021 20.4 3 -0.0167 (± 0.0003) 

HEE Kahoʻokele 08/30-
08/31/2021 

1.06 3 -0.0098 (± 0.0025) 
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Figure 4. Temperature corrections derived from individual Reserve’s interference trials were applied to 
tank data sets from three Reserves to assess the effect of the temperature correction on the model 
strength (R²) and model slope (GTM = Guana Tolomato Matanzas, NIW = North Inlet-Winyah Bay, and 
PDB = Padilla Bay). 
 
Turbidity 

Manipulating the turbidity in water samples from 0 - 1500 FNU with chlorophyll-free, inorganic 
standard, caused a 0.3 - 2-fold decrease in CHL-A RFU (Fig. 5) at GTM and NIW. At those sites, turbidity 
caused 20-55% attenuation of CHL-A fluorescence (Fig. 6). At HEE, where CHL-A values were low and 
unrealistically high turbidity levels (for that site) were tested, CHL-A (RFU) increased with increasing 
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turbidity in a non-linear fashion (Fig. 5).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Turbidity trial results at Guana Tolomato Matanzas (GTM), North Inlet-Winyah Bay (NIW), and 
He’eia (HEE) reserves.  
 



18 

 
 
Figure 6. Attenuation of the CHL-A (RFU) signal as a function of turbidity. Data derived from interference 
trials performed at Guana Tolomato Matanzas (GTM) and North Inlet-Winyah Bay (NIW). Note that 
He’eia’s turbidity trial data is not visualized due to an inadequate amount of CHL-A in their trials.  
 
Table 6. Turbidity trial results from Guana Tolomato Matanzas (GTM), North Inlet-Winyah Bay (NIW), 
and He’eia (HEE) reserves. 

Reserve Matrix Trial # Date CHL-A (µg/L) Slope 

GTM Pellicer Creek 1 07/07/2021 10.7 -0.0019 

GTM Pellicer Creek 2 07/20/2021 14.1 -0.0032 

NIW Oyster Landing 1 07/01/2021 17.4 -0.0004 

NIW Oyster Landing 2 07/07/2021 19.2 -0.0005 

NIW Oyster Landing 3 07/08/2021 29.9 -0.0008 

HEE Stream Mouth 1 08/16/2021 0.88 0.0004 

HEE Wai 2 2 08/16/2021 1.42 0.0003 
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FDOM 
Experimentally increasing FDOM in natural water samples and deionized water caused varying 

increases of in situ CHL-A (Fig. 7), the opposite direction of the effect of increasing turbidity and 
temperature. Relationships between in situ CHL-A and FDOM were not uniform across sites (Table 7), 
likely due to differences in the dissolved organic matter constituents used in the surrogate standard 
(Table 2).  

FDOM varies widely across Reserves in both concentration and optical properties, and many 
Reserves do not measure it consistently. Therefore, using a standard FDOM correction across Reserves is 
not practical.  
 
Table 7. FDOM experimental trial results conducted at Old Woman Creek (OWC), North Inlet-Winyah 
Bay (NIW), Lake Superior (LKS), and Guana Tolomato Matanzas (GTM) reserves. 

Reserve Matrix n FDOM surrogate source Mean Slope +/- SD  

OWC Deionized water 1 Old Woman Creek 0.0039 
 

OWC Deionized water 2 Old Woman Creek 0.0063 +/- 0.0012 

NIW Deionized water 1 Crab Haul Creek headwater 
wetland  

0.0172 

LKS Deionized water  1 St. Louis River Headwaters 0.0054 

GTM Tolomato River 1 St. Louis River Headwaters 0.0054 

GTM Tolomato River 1 Crab Haul Creek headwater 
wetland 

0.0172 

GTM Tolomato River 1 Pellicer Creek 0.0066 

GTM Pellicer Creek 1 Humic acid standard 0.0816 

OWC Lake Erie 1 Old Woman Creek  0.0016 
 

OWC Lake Erie 2 Old Woman Creek  0.0027 +/- 0.0017 

NIW Crab Haul Creek 1 Crab Haul Creek headwater 
wetland  

0.0188 

LKS St. Louis River 
Estuary 

1 St. Louis River Headwaters  0.0059 
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Figure 7. Fluorescent dissolved organic carbon (FDOM) effect on CHL-A (RFU) measured by the EXO Total 
Algae sensor. Experiments were conducted by Guana Tolomato Matanzas (GTM), Lake Superior (LKS), 
North Inlet-Winyah Bay (NIW), and Old Woman Creek (OWC) NERRs. Standards made using ambient 
water near each NERR site were added to deionized water (A) and local ambient water (B).  
 
Predicting Extracted CHL-A from In Situ CHL-A 
 
Comparisons between extracted and in situ CHL-A 

When in situ CHL-A and extracted CHL-A were measured simultaneously in both field- and lab-
based comparisons, they were significantly correlated, but in situ CHL-A only explained 35% of the 
variance in extracted CHL-A (Fig. 8). At individual sites, the relationship was tight for some (Fig. 9) and 
scattered for others (Fig. 10). 
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Figure 8. Relationship between in situ CHL-A (RFU) and extracted CHL-A (µg/L) using data from all 
comparisons (n = 1255). 
 

 
Figure 9. Examples of tight relationships between in situ CHL-A and extracted CHL-A at North Inlet-
Winyah Bay (left; R2 = 0.73) and Grand Bay (right; R2 = 0.86) reserves. 
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Figure 10. Examples of scattered relationships between in situ CHL-A and extracted CHL-A at He‛eia (left; 
R2 = 0.0013) and Lake Superior (right; R2 = 0.031) reserves. 
 
National models 

Using data from lab-based comparisons only, phytoplankton biomass as estimated by extracted 
chlorophyll CHL-A was linearly related to in situ CHL-A, reserve, FDOM, temperature, and turbidity data 
with an R2 = 0.786 and a median prediction error of 26% (Fig. 11 and Table 8). The model without FDOM 
explained only slightly less variance in the response (R2 = 0.774) and had slightly higher prediction error 
(27%). The model with only in situ CHL-A performed worse (R2 = 0.414, median prediction error = 50%). 

When data from lab- and field-based comparisons were combined, extracted CHL-A was linearly 
related to in situ CHL-A, reserve, season, FDOM, temperature, and turbidity data from both field- and 
lab-based comparisons with an R2 of 0.657 and a median prediction error of 36% (Fig. 11 and Table 9). 
The model without FDOM explained slightly less variance in the response (R2 = 0.632) and had slightly 
higher prediction error (38%). The model with in situ CHL-A performed poorest (R2 = 0.299, median 
prediction error = 56%). 
  
Site-specific models 
 For most sites, site-specific models explained more variance and were more than or equally 
reliable as the national lab-based model (Fig. 11, Table 10, Table 11). In general, the models with in situ 
CHL-A, FDOM, temperature, and turbidity data performed better than (1) models without FDOM and (2) 
models with in situ CHL-A only. However, the models without FDOM had similar fits and prediction 
ability to the models with FDOM. At some sites, models with only in situ CHL-A explained less than 5-
15% of the variance in the data. Some model overfitting was observed (R2 = 1), indicating both a need 
for more data points at those sites and a need for caution using those models to predict extracted CHL-
A. 
 

https://docs.google.com/document/d/1xgGD3u9hG_JKu_2O28ydkzXw_czsQyXT/edit?usp=sharing&ouid=118332411903280852940&rtpof=true&sd=true
https://docs.google.com/document/d/1xgGD3u9hG_JKu_2O28ydkzXw_czsQyXT/edit?usp=sharing&ouid=118332411903280852940&rtpof=true&sd=true
https://docs.google.com/document/d/1xgGD3u9hG_JKu_2O28ydkzXw_czsQyXT/edit?usp=sharing&ouid=118332411903280852940&rtpof=true&sd=true
https://docs.google.com/document/d/1xgGD3u9hG_JKu_2O28ydkzXw_czsQyXT/edit?usp=sharing&ouid=118332411903280852940&rtpof=true&sd=true
https://docs.google.com/document/d/1m82oR0qEyTUuMepSL9s5o7AK5cCECoJo/edit?usp=sharing&ouid=118332411903280852940&rtpof=true&sd=true
https://docs.google.com/document/d/1m82oR0qEyTUuMepSL9s5o7AK5cCECoJo/edit?usp=sharing&ouid=118332411903280852940&rtpof=true&sd=true
https://docs.google.com/document/d/13RwjiB_k5deW5ldQ_U2eCRQeCHPi8CRD/edit?usp=sharing&ouid=118332411903280852940&rtpof=true&sd=true
https://docs.google.com/document/d/13RwjiB_k5deW5ldQ_U2eCRQeCHPi8CRD/edit?usp=sharing&ouid=118332411903280852940&rtpof=true&sd=true
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Figure 11. Model performance comparison. 
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Table 8. National model results using lab- and field-based comparisons. “best_AIC” models represent the model with the best AIC out of the 
selection process with the following sensors and interactions included: chlorophyll, FDOM, temperature, and turbidity. “no_fdom” models 
represent the output including data from temperature, chlorophyll, and turbidity sensors, plus interactions. If at least two seasons were present 
in “best_AIC” and “no_fdom” models, season was included in the model as well; otherwise, it was not. “rfu_only” models only included data 
from the chlorophyll sensor. No model selection was performed on “no_fdom” and “rfu_only” models. In the 'season' column, a plus sign (+) is 
present if season was significant in the model. All other potential coefficients are continuous variables (and thus have a slope coefficient) or are 
excluded if they were not significant or intentionally not included in the model. Interactions are represented by a period between variable 
names. 

model AICc R2 
predictio
n_error chl_rfu fdom turb temp reserve season 

X 
Intercept 

fdom.c
hl_rfu 

fdom.t
emp 

fdom.
turb 

chl_rfu
.temp 

chl_rf
u.turb 

fdom.chl
_rfu.turb 

best_AIC 3047.55 0.657 35.96 0.557 7e-04 0.025 0.126 + + 0.162 NA -4e-04 NA -0.012 -0.004 NA 
no_fdom 3116.05 0.632 38.10 0.609 NA 0.025 0.092 + + 0.565 NA NA NA -0.014 -0.004 NA 
rfu_only 3769.49 0.299 56.21 0.375 NA NA NA NA NA 2.013 NA NA NA NA NA NA 

 
 
Table 9. National model results using lab-based comparisons. “best_AIC” models represent the model with the best AIC out of the selection 
process with the following sensors and interactions included: chlorophyll, FDOM, temperature, and turbidity. “no_fdom” models represent the 
output including data from temperature, chlorophyll, and turbidity sensors, plus interactions. If at least two seasons were present in “best_AIC” 
and “no_fdom” models, season was included in the model as well; otherwise, it was not. “rfu_only” models only included data from the 
chlorophyll sensor. No model selection was performed on “no_fdom” and “rfu_only” models. In the 'season' column, a + is present if season was 
significant in the model. All other potential coefficients are continuous variables (and thus have a slope coefficient) or are excluded if they were 
not significant or intentionally not included in the model. Interactions are represented by a period between variable names. 

model AICc R2 
predictio
n_error chl_rfu fdom turb temp reserve season 

X 
Intercept 

fdom.c
hl_rfu 

fdom.t
emp 

fdom.
turb 

chl_rfu
.temp 

chl_rf
u.turb 

fdom.chl
_rfu.turb 

best_AIC 704.48 0.786 25.65 0.231 0.003 0.125 0.027 + NA 1.149 0.001 -6e-04 NA 0.017 -0.027 NA 
no_fdom 721.17 0.774 26.66 0.414 NA 0.109 -0.021 + + 1.334 NA NA NA 0.010 -0.024 NA 
rfu_only 983.06 0.414 49.14 0.388 NA NA NA NA NA 2.178 NA NA NA NA NA NA 
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Table 10. Site-specific model results using lab- and field-based comparisons. “best_AIC” models represent the model with the best AIC out of the 
selection process with the following sensors and interactions included: chlorophyll, FDOM, temperature, and turbidity. “no_fdom” models 
represent the output including data from temperature, chlorophyll, and turbidity sensors, plus interactions. If at least two seasons were present 
in “best_AIC” and “no_fdom” models, season was included in the model as well; otherwise, it was not. “rfu_only” models only included data 
from the chlorophyll sensor. No model selection was performed on “no_fdom” and “rfu_only” models. In the 'season' column, a + is present if 
season was significant in the model. All other potential coefficients are continuous variables (and thus have a slope coefficient) or are excluded if 
they were not significant or intentionally not included in the model. Interactions are represented by a period between variable names. 

Reserve model AICc R2 
predicti
on_error chl_rfu fdom turb temp season 

X 
Intercept 

fdom.c
hl_rfu 

fdom.t
emp fdom.turb 

chl_rfu
.temp 

chl_rfu
.turb 

fdom.chl_
rfu.turb 

ELK best_AIC 164 0.782 29.31 0.365 0.024 -0.020 0.232 + -1.216 -0.012 NA NA NA NA NA 
ELK no_fdom 167.15 0.775 29.86 0.497 NA 0.025 0.261 + -1.448 NA NA NA -0.011 -0.0166 NA 
ELK rfu_only 219.1 0.531 39.18 0.410 NA NA NA NA 2.161 NA NA NA NA NA NA 
GND best_AIC 16.05 0.936 14.57 4.200 0.102 0.043 NA + -6.832 -0.0431 NA NA NA NA NA 
GND no_fdom 28.46 0.911 23.63 -4.397 NA 0.206 -0.649 + 15.283 NA NA NA 0.244 -0.0709 NA 
GND rfu_only 19.89 0.842 18.12 1.569 NA NA NA NA -0.488 NA NA NA NA NA NA 
GTM best_AIC 218.52 0.801 37.36 0.270 -0.010 -0.033 0.034 + 1.999 NA NA NA -0.015 0.0118 NA 
GTM no_fdom 268.4 0.731 40.07 0.143 NA -0.067 0.026 + 1.34 NA NA NA -0.014 0.0235 NA 
GTM rfu_only 398.79 0.383 54.22 0.278 NA NA NA NA 1.151 NA NA NA NA NA NA 
LKS best_AIC 400.05 0.467 33.69 -0.438 0.004 NA 0.345 NA 1.776 0.0104 -0.0034 NA NA NA NA 
LKS no_fdom 432.81 0.332 38.19 -0.158 NA -0.523 0.048 + 5.139 NA NA NA -0.015 0.1323 NA 
LKS rfu_only 462.74 0.056 44.9 0.254 NA NA NA NA 3.821 NA NA NA NA NA NA 
NIW_isco best_AIC 71.22 0.866 16.52 4.453 0.024 0.014 0.125 NA -4.938 NA NA NA -0.117 NA NA 
NIW_isco no_fdom 96.52 0.81 19.76 3.762 NA 0.011 0.098 NA -1.924 NA NA NA -0.098 0.0034 NA 
NIW_isco rfu_only 102.31 0.766 20.54 0.922 NA NA NA NA 1.313 NA NA NA NA NA NA 
OWC best_AIC 287.83 0.862 26.37 0.265 0.006 -0.008 0.162 + 1.433 -0.005 0.0014 NA NA 0.0047 NA 
OWC no_fdom 295.83 0.848 24.83 0.088 NA -0.005 0.245 + 1.556 NA NA NA -0.004 0.0038 NA 
OWC rfu_only 437.02 0.491 54.08 0.296 NA NA NA NA 2.731 NA NA NA NA NA NA 
PDB best_AIC 1.33 0.846 19.65 1.100 0.022 0.123 0.063 + -0.026 NA NA NA -0.036 -0.0855 NA 
PDB no_fdom 2.08 0.839 20.41 1.096 NA 0.128 0.067 + 0.159 NA NA NA -0.035 -0.0834 NA 
PDB rfu_only 66.63 0.567 33.88 0.567 NA NA NA NA 1.26 NA NA NA NA NA NA 
WEL best_AIC 307.19 0.42 109.97 0.223 -0.067 NA 0.141 NA 0.198 NA 0.0051 NA NA NA NA 
WEL no_fdom 312.19 0.439 115.92 3.126 NA 0.006 0.46 + -2.051 NA NA NA -0.203 -0.0797 NA 
WEL rfu_only 340.46 0.009 116.06 0.472 NA NA NA NA 1.889 NA NA NA NA NA NA 
GRB best_AIC 109.4 0.912 24.09 -0.943 -0.015 0.014 -0.038 + 2.703 0.0039 NA NA 0.060 NA NA 
GRB no_fdom 188.79 0.845 35.05 -1.700 NA 0.057 -0.211 + 4.942 NA NA NA 0.112 -0.0117 NA 
GRB rfu_only 278.53 0.681 44.01 0.471 NA NA NA NA 1.301 NA NA NA NA NA NA 
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Table 10 (continued). 

Reserve model AICc R2 
predicti
on_error chl_rfu fdom turb temp season 

X 
Intercept 

fdom.c
hl_rfu 

fdom.t
emp fdom.turb 

chl_rfu
.temp 

chl_rfu
.turb 

fdom.chl_
rfu.turb 

HEE_w2 best_AIC -286.34 1 57.91 -8.174 0.029 -0.464 NA NA 7.383 NA NA NA NA NA NA 
HEE_w2 no_fdom -277.99 1 36.5 -7.889 NA -0.468 -0.092 NA 11.55 NA NA NA NA NA NA 
HEE_w2 rfu_only Inf 0.02 29.38 -0.320 NA NA NA NA 1.003 NA NA NA NA NA NA 
HEE best_AIC 11.76 0.39 43.13 0.079 -0.020 NA NA + 0.642 NA NA NA NA NA NA 
HEE no_fdom 23.13 0.431 42.48 12.403 NA 0.411 0.06 + -1.389 NA NA NA -0.375 -2.5329 NA 
HEE rfu_only 12.72 0.01 42.28 0.084 NA NA NA NA 0.783 NA NA NA NA NA NA 
MAR best_AIC 26.65 0.895 23.35 1.046 NA NA 0.052 NA 0.63 NA NA NA NA NA NA 
MAR no_fdom 54.27 0.92 26.94 0.301 NA -0.010 0.047 + 0.757 NA NA NA 0.020 0.0146 NA 
MAR rfu_only 26.81 0.87 22.38 1.079 NA NA NA NA 1.959 NA NA NA NA NA NA 
NIW best_AIC 10.66 0.972 12.74 2.316 -0.011 0.032 0.006 + 0.524 -0.0072 0.0015 -5.00E-04 -0.039 NA NA 
NIW no_fdom 51.41 0.941 17.79 1.697 NA 0.019 0.1 + -0.325 NA NA NA -0.039 0.001 NA 
NIW rfu_only 89.74 0.865 23.58 1.158 NA NA NA NA 1.535 NA NA NA NA NA NA 
SAP best_AIC 141.16 0.561 53.51 1.146 NA 0.130 NA + 0.195 NA NA NA NA -0.0346 NA 
SAP no_fdom 145.89 0.574 56.58 1.058 NA 0.148 0.097 + -1.384 NA NA NA 0.007 -0.039 NA 
SAP rfu_only 162.66 0.122 64.05 0.248 NA NA NA NA 2.49 NA NA NA NA NA NA 

 
Table 11. Model results using lab-based comparisons. “best_AIC” models represent the model with the best AIC out of the selection process with 
the following sensors and interactions included: chlorophyll, FDOM, temperature, and turbidity. “no_fdom” models represent the output 
including data from temperature, chlorophyll, and turbidity sensors, plus interactions. If at least two seasons were present in “best_AIC” and 
“no_fdom” models, season was included in the model as well; otherwise, it was not. “rfu_only” models only included data from the chlorophyll 
sensor. No model selection was performed on “no_fdom” and “rfu_only” models. In the 'season' column, a + is present if season was significant 
in the model. All other potential coefficients are continuous variables (and thus have a slope coefficient) or are excluded if they were not 
significant or intentionally not included in the model. Interactions are represented by a period between variable names. 

Reserve model AICc R2 
prediction
_error chl_rfu fdom turb temp season 

X 
Intercept 

fdom.c
hl_rfu 

fdom.
temp 

fdom.
turb 

chl_rfu
.temp 

chl_rfu
.turb 

fdom.chl_r
fu.turb 

GND best_AIC -750.39 1 54.52 3.88 0.115 -0.889 -0.291 + 1.287 -0.088 0.000 0.013 0.102 NA NA 
GND no_fdom 159.92 0.897 56.14 -6.19 NA 0.164 -0.808 + 20.103 NA NA NA 0.300 -0.050 NA 
GND rfu_only 17.23 0.786 26.65 1.57 NA NA NA NA -0.612 NA NA NA NA NA NA 
GRB best_AIC 27.53 0.977 28.15 -0.961 0.012 NA -0.064 NA 2.668 NA NA NA 0.069 NA NA 
GRB no_fdom 35.46 0.98 27.26 -1.526 NA 0.089 -0.154 + 4.224 NA NA NA 0.116 -0.063 NA 
GRB rfu_only 49.24 0.88 35.24 0.397 NA NA NA NA 1.981 NA NA NA NA NA NA 
GTM best_AIC 32.21 0.917 20.32 0.292 NA 0.081 NA NA 0.88 NA NA NA NA NA NA 
GTM no_fdom 50.5 0.925 25.93 0.243 NA 0.006 0.002 + 1.157 NA NA NA -0.001 0.006 NA 
GTM rfu_only 47.16 0.853 25.19 0.332 NA NA NA NA 1.303 NA NA NA NA NA NA 
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Table 11 (continued). 

Reserve model AICc R2 
prediction
_error chl_rfu fdom turb temp season 

X 
Intercept 

fdom.c
hl_rfu 

fdom.
temp 

fdom.
turb 

chl_rfu
.temp 

chl_rfu
.turb 

fdom.chl_r
fu.turb 

HEE_w2 best_AIC -286.34 1 57.91 -8.174 0.029 -0.464 NA NA 7.383 NA NA NA NA NA NA 
HEE_w2 no_fdom -277.99 1 36.5 -7.889 NA -0.468 -0.092 NA 11.55 NA NA NA NA NA NA 
HEE_w2 rfu_only Inf 0.02 29.38 -0.32 NA NA NA NA 1.003 NA NA NA NA NA NA 
HEE best_AIC 11.76 0.39 43.13 0.079 -0.020 NA NA + 0.642 NA NA NA NA NA NA 
HEE no_fdom 23.13 0.431 42.48 12.403 NA 0.411 0.060 + -1.389 NA NA NA -0.375 -2.533 NA 
HEE rfu_only 12.72 0.01 42.28 0.084 NA NA NA NA 0.783 NA NA NA NA NA NA 
LKS best_AIC 108.77 0.824 19.93 -0.892 0.025 0.111 0.294 + 0.672 0.007 -0.002 -0.002 NA 0.086 NA 
LKS no_fdom 156.21 0.639 25.61 0.186 NA -0.403 0.059 + 3.697 NA NA NA -0.024 0.120 NA 
LKS rfu_only 156.35 0.578 26.57 0.686 NA NA NA NA 1.942 NA NA NA NA NA NA 
MAR best_AIC 26.65 0.895 23.35 1.046 NA NA 0.052 NA 0.63 NA NA NA NA NA NA 
MAR no_fdom 54.27 0.92 26.94 0.301 NA -0.010 0.047 + 0.757 NA NA NA 0.020 0.015 NA 
MAR rfu_only 26.81 0.87 22.38 1.079 NA NA NA NA 1.959 NA NA NA NA NA NA 
NIW best_AIC 10.66 0.972 12.74 2.316 -0.011 0.032 0.006 + 0.524 -0.007 0.002 -0.001 -0.039 NA NA 
NIW no_fdom 51.41 0.941 17.79 1.697 NA 0.019 0.100 + -0.325 NA NA NA -0.039 0.001 NA 
NIW rfu_only 89.74 0.865 23.58 1.158 NA NA NA NA 1.535 NA NA NA NA NA NA 
PDB best_AIC -1021.23 1 92.6 0.904 -0.215 -2.820 -0.153 + 3.545 -0.131 0.027 0.133 NA -0.252 0.169 
PDB no_fdom 102.7 0.992 49.48 0.361 NA -0.039 0.029 + 0.554 NA NA NA 0.012 0.122 NA 
PDB rfu_only 6.44 0.941 23.42 0.643 NA NA NA NA 0.951 NA NA NA NA NA NA 
SAP best_AIC 141.16 0.561 53.51 1.146 NA 0.130 NA + 0.195 NA NA NA NA -0.035 NA 
SAP no_fdom 145.89 0.574 56.58 1.058 NA 0.148 0.097 + -1.384 NA NA NA 0.007 -0.039 NA 
SAP rfu_only 162.66 0.122 64.05 0.248 NA NA NA NA 2.49 NA NA NA NA NA NA 
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Conclusions 
 

Based on the evidence from these experiments and models, varying levels of temperature, 
turbidity, and FDOM all influence in situ CHL-A readings from the YSI EXO TAL sensor. In manipulation 
experiments, in situ CHL-A fluorescence generally decreased when temperature was elevated, 
decreased when turbidity was elevated, and increased when FDOM was elevated. Therefore, while the 
raw sensor data provides much higher temporal resolution and captures variability missed by monthly 
discrete sampling, there is potential for erroneous, misleading sensor readings if they are not adjusted 
for the effects of temperature, turbidity, and FDOM. However, correcting in situ CHL-A using data from 
the accessory sensors is not a straightforward process. For example, fluorescence readings from the 
FDOM optical sensor are themselves influenced by temperature and turbidity (Downing et al. 2012). 
Even when the same standard was used for turbidity and FDOM treatment additions, in situ CHL-A 
responses were site-specific.  

Temperature, turbidity, and FDOM corrections may be useful for some stations. The preliminary 
experiments in this project were helpful in highlighting potential errors in sensor readings due to light 
scattering and absorbance by those parameters, but more replication is needed to develop reliable 
corrections for those parameters. Based on the experimental trials from HEE, there may be a minimum 
ambient CHL-A concentration required for reliable results, and it may be important to keep 
manipulations to realistic levels.  

The national linear model of in situ CHL-A explained 35% of the variance in extracted CHL-A. 
Predictive capability increased when both (1) other sensor data and (2) only lab-based comparison data 
were included (R2 = 0.786 and prediction error = 26%). Given the results from our interference 
experiments, it is not surprising that temperature, turbidity, and FDOM were significant factors in the 
national models. The significance of the “reserve” parameter in these models suggests that site-specific 
factors beyond temperature, turbidity, and FDOM are also important and that it is not appropriate to 
use the national model to predict extracted CHL-A from in situ CHL-A measured at sites not included in 
this study. The amount of variance not explained by the model is likely a combination of species 
composition, chlorophyll degradation, light history, and interferences. 

Site-specific models varied with respect to model performance and significant explanatory 
variables, which indicates that site-specific factors are important in determining the strength and the 
drivers of the relationship between in situ CHL-A and extracted CHL-A. A few site-specific models poorly 
predicted extracted CHL-A even when temperature, turbidity, and FDOM were considered. Among these 
models were He‛eia and Wells sites, which experienced extremely low CHL-A levels, likely due to high 
noise-to-signal ratios. Additionally, the Lake Superior site experienced high temperature variability. In 
fact, in situ CHL-A was not a significant factor in this model, as extracted CHL-A was explained better by 
temperature. 
  
Recommendations 
 

The TAL sensor is clearly valuable, and we recommend NERRS begin implementing high-
frequency chlorophyll monitoring system-wide. However, we also support the conclusions of 
manufacturers and previous studies (Lohrer 2000) that this sensor is not a direct substitute for 
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extractive CHL-A analysis. Due to the significant costs and time investment required to implement high-
frequency chlorophyll monitoring, we do not recommend that reserves be required to do so unless staff 
and supply funding is dedicated.  

Recommendations for whether and how reserves choose to implement the EXO TAL sensor 
depend on the chlorophyll monitoring goals for each individual station and the resources available (see 
considerations section below). If assessing short-term variability in algal abundance between monthly 
SWMP grab sampling events is desirable, then simply deploying a TAL sensor and recording chlorophyll 
fluorescence in RFU is useful and feasible. If early warning, rapid response to algal blooms is a goal (see 
considerations below), then the station needs to be telemetered.  

If relating RFU to µg/L with better accuracy is a goal, then we recommend the following steps 
(Fig. 12): 

● Step 1: Assess historical levels of extracted CHL-A. 
○ If historic extracted CHL-A is always less than 2 µg/L, relationships with extracted CHL-A may not 

be feasible because of high noise to signal ratio. 
■ This 2 µg/L benchmark was chosen based on HEE results.  
■ In case of HEE, they are still interested in CHL-A peaks relating to rainfall and seasonal 

change, so they are still using TAL sensors with the caveat that they donʻt directly 
correlate with extracted CHL-A. Their sensor also requires extra maintenance due to 
siltation on the sensor face. 

○ If historic extracted CHL-A ranges are more than 2 µg/L, move to Steps 2 and 3 
● Step 2 (optional): Conduct a year of SWMP discrete and continuous sampling.  

○ Develop a regression model. 
○ If the relationship is poor, then move to Step 3. 

● Step 3: Conduct site-specific comparison trials. 
○ Conduct comparisons over multiple seasons and try to capture as much environmental variability 

as possible.  
○ See lab-based comparison protocols. 
○ Develop a regression model. 
○ If the relationship is poor, then run trials based on your site characteristics (Step 4). 

● Step 4: Conduct site-specific manipulation experiments and make any necessary corrections  
○ Note: for maximum efficiency with supplies and effort, we recommend that this step be run at 

the same time as Step 3, but do acknowledge the extra level of effort required). 
○ Assess historical levels of temperature, turbidity, and FDOM. 
○ If the site has high and variable temp, run temperature experiments. 
○ If the site has high and variable turbidity, run turbidity experiments. 
○ If the site has high organic matter, run FDOM experiments. 
○ See recommended protocols for details, but add more replication. 
○ In both ambient water and experimental manipulations, sample/manipulate over the range of 

expected values specific to the site. 
○ Develop correction equations. 

■ Note: we also recommend the NERRS create a coordinated protocol for improved FDOM 
correction development. Our trials show that several more experiments that vary in 
matrices and carbon source standards are required to develop a robust correction 
method. 

https://drive.google.com/file/d/1QVc18K41HMy8QCmJHIXYyIiX5z8euzXg/view?usp=sharing
https://drive.google.com/file/d/1QVc18K41HMy8QCmJHIXYyIiX5z8euzXg/view?usp=sharing
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Figure 12. Decision tree for reserves considering chlorophyll sensor implementation. 
 

Regardless of individual reserve monitoring goals and decisions about deploying the EXO TAL 
sensor, we recommend that the Centralized Data Management Office (CDMO) require data from the 
TAL sensor be submitted in RFU. Currently, CDMO requires data in µg/L. This recommendation supports 
previous recommendations by Lohrer (2000) that the data be reported and interpreted as fluorescence 
units (with no conversion to µg L-1) and used as relative (not absolute) values. In addition, the YSI EXO 
manual itself does not recommend using µg/L: 

 
“The TAL sensors generate data in RFU or µg/L of pigment (chl, PC or PE) units, with RFU as 

the default … However, users are advised to use default RFU, which stands for Relative 
Fluorescence Units … RFU calibration allows for the best comparisons of data from sensor to 
sensor, and also enables users to monitor for sensor drift and edaphic factors such as biofouling 
or declining sensor optical performance over time as the LEDs age … The µg/L output generates 
an estimate of pigment concentration that is based upon correlations we built between sensor 
outputs and extracted pigments from laboratory-grown blue-green algae … Further, since algal 
populations can regulate their intracellular pigment concentrations, the µg/L of pigment per cell 
changes with season, time of day, and population dynamics. Thus the challenge with the µg/L 
unit is user expectations: it should not be expected that µg/L will necessarily correlate well with 
pigment extractions that customers perform themselves.” (page 134; EXO User Manual Rev. K) 

 
We recommend that TAL sensors be calibrated to and reported as RFU, rather than μg/L, 

because we believe RFU acknowledges the inherent uncertainty of the measurement, whereas the μg/L 
output of the sensor could be misleading. This nuance could be lost on end users who are interested in 
reserve chlorophyll datasets, and in situ CHL-A data can be potentially mischaracterized if they are 
reported in μg/L, as currently recommended by SWMP protocols. Therefore, given that the TAL requires 
separate calibrations for RFU and ug/L, we recommend that the SWMP SOP be revised to recommend 
calibrating to RFU only (see draft) in order to save time and provide the most objective reflection of 

https://drive.google.com/file/d/12ULi51ASm4Lh7FbjddJCAYw8s9iQeYsi/view?usp=sharing
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what the sensor is measuring. We have also drafted a SOP for calibrating the EXO FDOM sensor 
according to the YSI manual (see draft).  

Based on feedback from the CDMO, we recommend the NERRS Data Management Committee 
develop standard metadata language and guidance on QAQC documentation for TAL sensor 
deployment. Technician training could also be improved by creating a “tips and tricks” document, a 
supply list, and instructional videos. 
 
Considerations for Implementing High-Frequency In Situ CHL-A Monitoring 
 

Using CHL-A as an indicator of phytoplankton biomass has several limitations to consider. 
Phytoplankton can adjust the amount of CHL-A in their chloroplasts based on light availability, a 
phenomenon termed photoacclimation (Falkowski and LaRoche 1991). Furthermore, they can emit heat 
instead of fluorescence to protect themselves from high light intensities by using a mechanism called 
non-photochemical quenching (Müller et al. 2001). These processes do not affect cell biomass, meaning 
that CHL-A measurements may over or underestimate actual phytoplankton biomass based on 
environmental conditions and cell physiology. These considerations are applicable to all methods that 
use CHL-A as a proxy for phytoplankton biomass, including in situ CHL-A sensors, but additional caveats 
related to traditional CHL-A extractions also exist. While extracted CHL-A measurements are made more 
quickly than quantifying phytoplankton biomass using microscopy, they still require water samples to be 
collected, transported, and analyzed in a laboratory by a technician. Since phytoplankton turnover times 
can be less than a day (Agawin et al. 2000), rapidly occurring phenomena such as weather events (Klug 
et al. 2012) can potentially create changes in phytoplankton that would be missed by infrequent water 
sample collections.  

Another important consideration is that in situ CHL-A methods measure the instantaneous 
fluorescence of the “packet” of water immediately in front of the sensor, which can change by the 
second. Therefore, in situ CHL-A data will vary based on the time period over which the fluorescence is 
averaged (Chaffin et al. 2018), although this is not a consideration with extracted CHL-A measured from 
a grab sample. Furthermore, and as previously discussed, other components in water can fluoresce at a 
similar wavelength as CHL-A. This creates the potential for error in situ, but not with extracted CHL-A, 
where solvents bind specifically to CHL-A molecules, enabling fluorescence measurements to be specific 
to CHL-A. Another reason that both metrics differ is that in situ sensors measure fluorescence in RFUs, 
whose conversion to a concentration is not always accurate. However, extracted CHL-A does accurately 
report concentrations because of a known volume of water and a lack of potential interference. While 
there are instances when the relationship between in situ and extracted CHL-A is strong, the relationship 
between these metrics often changes over time, making it difficult to rely exclusively on one metric over 
the other, so care should be taken when making direct comparisons between the two. Both metrics are 
informative as long as proper consideration is given to what each is measuring.  

Taken together, and with a proper understanding of the strengths and limitations to each 
metric, both extracted and in situ CHL-A can be informative for the SWMP. Extracted CHL-A data from 
discrete samples contribute to our understanding of long-term changes because they can be compared 
with historical measurements, while high-frequency, in situ CHL-A data are especially useful in assessing 
short-term variability (see Case Studies, Fig. 2 and Table 4). The most immediate benefit of high-

https://drive.google.com/file/d/1mCPm06ZHKzZJbnrOFFIUjfuSDYwFw52m/view?usp=sharing
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frequency chlorophyll data is that reserve staff and local stakeholders gain a better understanding of the 
natural dynamics in their system. With high-frequency data, researchers can study how chlorophyll 
changes with tides, from day to night, from season to season, and after events like hurricanes and 
nor’easters. They can also explore how patterns in phytoplankton biomass relate to other 
environmental variables like salinity, temperature, oxygen, nutrients, precipitation, and light. Even 
further, this foundational information on natural chlorophyll dynamics is essential for detecting change 
induced by humans. Reserves can then serve as reference sites for more impacted estuaries, sites within 
reserves with varying degrees of human impact can be compared, and long-term trends at each site can 
be more quickly detected. High-frequency chlorophyll data will encourage more research by the broader 
scientific community on the detailed mechanisms that drive blooms and general plankton dynamics, 
which will help prevent and manage harmful blooms in the future. Other related research topics include 
investigations of carbonate chemistry/coastal acidification, ecosystem metabolism, herbivorous fish 
diet, resource habitat niche partitioning, and effects of altered hydrology and upwelling on primary 
production. It is worth noting that during the COVID pandemic and subsequent lapse in fieldwork (due 
to restrictions preventing water sampling for extracted chlorophyll), continuous monitoring of in situ 
chlorophyll at the Padilla Bay NERR was the only way staff could confirm patterns in spring bloom 
dynamics and compare them to previous years. 

With some effort, other management, education, and aquaculture applications for high-
frequency chlorophyll data have great potential. For instance, coastal managers need more effective 
ways to track algal blooms over space and time. This could be done by verifying and contextualizing 
remote sensing products using chlorophyll sensor data from fixed, continuous stations. Where 
monitoring stations are telemetered, near-real-time chlorophyll data could be used for early detection 
of and rapid response to algal blooms, as monitoring stations can alert technicians when chlorophyll 
values reach a pre-defined threshold. These alerts could mobilize field crews to respond quickly, collect 
plankton and other environmental samples, and alert appropriate agencies and the public. In fact, this 
very need has recently been defined by Florida’s Coastal Management Program Director and Chief 
Science Officer (personal communication). Aquaculture professionals could also use these data to assess 
food availability for the filter feeders they grow in estuaries, and teachers could use these data to 
enhance education efforts on data literacy, primary production, and food web dynamics. 

Monetary cost is a primary factor each that reserve should consider when deciding whether to 
include TAL sensors in their monitoring program. Potential costs include the cost of purchasing the TAL 
and FDOM sensors, purchasing associated standards, and proper waste disposal of those standards. At 
the time of writing, the TAL from YSI costs $3,150, and the FDOM sensor costs $2,394. Per YSI, the 
minimum lifespan of the TAL and FDOM sensors is five years, though both are under warranty for two 
years. Both the TAL and FDOM sensors are optical, which means that consumable costs should be 
minimal over their lifespan. The standard for calibrating the TAL sensor requires rhodamine dye, while 
quinine sulfate dihydrate and 0.1N sulfuric acid are used to calibrate the FDOM sensor. Rhodamine dye 
is a small cost because the small quantity required to make the stock (and the one-year stability of that 
stock )means that it can be purchased infrequently. For the FDOM sensor, 0.1N sulfuric acid costs 
approximately $120 per year, while quinine sulfate dihydrate costs less than $100 per year. After sonde 
post deployment, calibration standards must be properly disposed of. Rhodamine dye disposal varies, 
with some entities requiring external disposal while others allow drain disposal. Quinine sulfate, the 
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standard for calibrating the FDOM sensor, should not be disposed via drain and requires proper 
disposal. Costs incurred from waste disposal will vary from reserve to reserve.   

Time investment is the second major consideration for reserves considering including TAL 
sensors in their monitoring. We estimate that performing the two-point calibration required for both 
the TAL and FDOM sensors will take around thirty minutes per sonde for each pre-calibration. This 
estimate does not include the roughly thirty minutes it takes to prepare the rhodamine dye and quinine 
sulfate standards, which would only have to be performed once for all sondes with TAL and FDOM 
sensors. We estimate that post-calibration would take less than thirty minutes per sonde, which, if 
performed within the 24 hour lifespan of the rhodamine calibration standard, could use the standard 
prepared previously for pre-calibration. Quinine sulfate will need to be prepared separately for both 
pre- and post-deployment.  

The third and final consideration for incorporating in situ chlorophyll monitoring is the lost 
opportunity of including an alternative sensor on a sonde. Reserves will need an EXO2 sonde (rather 
than an EXO1 or EXO3 sonde) because the EXO2 has enough sensor ports to accommodate the TAL and 
FDOM sensors in addition to all the sensors required for SWMP. The TAL and FDOM sensors would fill all 
the EXO2’s ports, thereby excluding other non-required SWMP sensors (e.g., YSI’s NITRALed sensor). 
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