| Scientist: | |------------| |------------| # **WORKSHEET 2: Marine Debris Toxicity Methods** | Question: Is marine debris leacha | te toxic to Artemia? | |------------------------------------|----------------------------------| | Treatments: cigarette filter leach | nate, cigarette tobacco leachate | | Marine debris type: | | | Hypothesis: If | is toxic then | STEP ONE: CREATE STOCK OF DILUTIONS IN **10ml TEST TUBES**. These will be used by the whole class to do the experiments. Make sure to flick the test tube 20 times so that the liquid is mixed. | | Plastic Water for dilution experiments (use 10ml test tubes to make the dilutions, these will be used to take water for the experiments below) | | | | | |---|--|--|-------------------------------------|---------------------------------------|--------------------------------------| | Labels for 10ml test tubes: | FULL
STRENGTH | 3/4
STRENGTH | ½
STRENGTH | 1/4
STRENGTH | CONTROL | | Amount of water
to add from
marine debris
leachate | 10 ml of
marine debris
water | 7.5 ml of
marine
debris
water | 5ml of
marine
debris
water | 2.5ml of
marine
debris
water | 0 ml of
marine
debris
water | | Amount of water
to add from sea
water (from glass
test tube) | Oml of
seawater | 2.5 ml of seawater | 5ml of
seawater | 7.5ml of seawater | 10ml of seawater | | TOTAL amount of water in mixing test tube | 10ml
full strength | 10ml
34 strength
(75%) | 10ml
½ strength
(50%) | 10ml
14 strength
(25%) | 10ml
control | | Scientist: | | |------------|--| |------------|--| #### **Step Two Make the experimental test tubes:** Get ten small 5ml test tubes for your table (use a rack). You will have two replicates per treatment. - Label the test tubes - Add 3ml of solution from each treatment to each test tube. - Place one drop of barnacle larvae)~15-20 larvae) in each 5ml test tube - Cover each tube with parafilm, and let sit for 24 hrs | 5ml Test tube
labels | Control | 1/4 strength | ½ strength | ¾ strength | Full strength | |---|-------------------------------------|---------------------|-----------------------|--------------------------|--------------------------------| | Number of replicate 5 ml test tubes | 2 | 2 | 2 | 2 | 2 | | Amount of
water added per
test tube | 3ml from
"sea water
in glass" | 3ml "¼
strength" | 3ml from "½ strength" | 3ml from "¾
strength" | 3ml from
"full
strength" | | Number of sea
monkeys per
tube | 15-20 | 15-20 | 15-20 | 15-20 | 15-20 | #### **STEP THREE:** - After 24 hours, pour the contents of each test tube into a Bogorob tray and use a dissecting microscope to count the number of alive and dead sea-monkeys in each tube and record the number on the data collection worksheet. Dead sea monkeys are those that aren't swimming, alive ones are swimming. - Generate a bar graph and survivorship curve, using data from the data collection worksheets. ### Conclusion/Write-Up For the discussion, answering the following questions; - 1. What type of marine debris did your group test? - 2. What was the mortality of Artemia in marine debris, compared to that of the control? (i.e. Did more survive in the marine debris water or control water?) - a. What do your results tell us about the toxicity of that type marine debris? - 3. What do these results tell us about marine debris? Do they leach chemicals? How do you know? - 4. Compare your results with a group who has a different type of marine debris. How are your results different? How are they similar? Which group had the most toxic water? - 5. Explain your graph: Does your curve match your prediction? Why or Why not? | Scientist: | | |------------|--| |------------|--| ## DATA Sheet | | # of dead
barnacle
larvae | # alive
barnacle
larvae | Total barnacle
larvae
(alive + dead) | % mortality
(#dead
larvae/total #
larvae*100) | |--------------------|---------------------------------|-------------------------------|--|--| | Count 1: | | | | | | Count 2: | | | | | | Count 3: | | | | | | Average of counts: | | | | | | Count 1: | | | | | | Count 2: | | | | | | Count 3: | | | | | | Average of counts: | | | | | | Count 1: | | | | | | Count 2: | | | | | | Count 3: | | | | | | Average of counts: | | | | | | Count 1: | | | | | | Count 2: | | | | | | Count 3: | | | | | | Average of counts: | | | | | | Count 1: | | | | | | Count 2: | | | | | | Count 3: | | | | | | Average of counts: | | | _ | |