

NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM SCIENCE COLLABORATIVE

Smithsonian Environmental Research Center

What's a Wetland Worth?

Understanding Measurement Tools for Blue Carbon and Financial Incentives for Conservation of Kenai Peninsula Wetlands

Kenai Peninsula's "Blue & Turquoise" Carbon

and the bound the first the stand

Peatland Functions and Values

PEATMAN, http://peatman.eu/

Assessing Blue and Turquoise Carbon Potential in the Kachemak Bay Region

KBNERR

Smithsonian Environmental Research Center

Waquoit Bay NERR funding from the NERR Science Collaborative

Background - Blue and Turquoise Carbon on the Kenai Peninsula

Smithsonian Environmental Research Center

Dennis Whigham and Pat Megonigal Smithsonian Environmental Research Center

Steve Crooks Silvestrum Climate Associates

With a big THANKS to Steve Baird and Mike Gracz' Cook Inlet wetland study

Summary data for wetlands mapped by Mike Gracz. Two types are on predominantly mineral soils and I could not find data on the web site for the headwater fen type. Values are means <u>+</u> SE

Wetland type	Categories	Hectares	Peat Depth cm	рН	Conductivity μS/cm	
Depression	4	5,307	178 (25)	4.7 (.2)	39 (7)	
Discharge Slope	8	37,075				Mineral
Drainage Way	7	17,310	103 (26)	5.6 (.3)	101 (12)	
Headwater Fen						
Kettle	4	16,176	154 (17)	5.4 (.3)	67 (6)	
Lakebed	5	32,623	156 (24)	5.1 (.2)	55 (6)	
Riverine	4					Mineral
VLD Trough		1,628	262 (81)	5.2 (.1)	67 (11)	
Spring Fen	3	1,008	194 (17)	5.4 (.3)	77 (5)	
Tidal	12	5,468	36	7.3	1153	
Tidal D'Way	6	3,309	181 (86)	6.4 (.4)	298 (76)	
Wetland Upland	1	8,452	16	6.5		

In this slide and those that follow, subtypes are indicated

Depression

17,310 Ha 103 (26) = mean peat depth (cm)

Relict Drainageway

Artwork by Conrad Field

16,176 Ha 154 (17) = mean peat depth (cm)

Relict Lakebed

VLD = Very Large Dunes

262 (81) = mean peat depth (cm)

VLD Trough

Artwork by Conrad Field

Spring Fen

Tidal Wetland

Salt Marsh Mapping and Monitoring at Kachemak Bay Research Reserve

Following slides provided by Steve Baird

An example, Beluga Slough - 15 plant communities mapped. Sampled by Lisa Schile

2010 NERRS Biomonitoring

Fox River Flats – at head-of-tide in K. Bay. Glacial sediments dominate the area

China Poot – Complex plant communities mapped.

Sunken forest at upland/wetland border from 1964 earthquake.

Sampled by Lisa Schile

Soil and Plant Carbon Stocks

Murray et al. 2010, Nicholas Institute Policy Brief

Cost for Loss of Blue Carbon Ecosystems

Table 1. Estimates of carbon released by land-use change in coastal ecosystems globally and associated economic impact.

Ecosystem	Inputs		Results		
	Global extent (Mha)	Current conversion rate (% yr ⁻¹)	Near-surface carbon susceptible (top meter sediment+biomass, Mg CO ₂ ha ⁻¹)	Carbon emissions (Pg CO ₂ yr ⁻¹)	Economic cost (Billion US\$ yr ⁻¹)
Tidal Marsh	2.2-40 (5.1)	1.0-2.0 (1.5)	237-949 (593)	0.02-0.24 (0.06)	0.64-9.7 (2.6)
Mangroves	13.8-15.2 (14.5)	0.7-3.0 (1.9)	373-1492 (933)	0.09-0.45 (0.24)	3.6-18.5 (9.8)
Seagrass	17.7-60 (30)	0.4-2.6 (1.5)	131-522 (326)	0.05-0.33 (0.15)	1.9-13.7 (6.1)
Total	33.7-115.2 (48.9)			0.15-1.02 (0.45)	6.1-41.9 (18.5)

Wetland Budget Components

Types of coring devices

Russian peat corer

Core to Refusal Depth (1 m minimum)

Carbon Density = Bulk Density x [C]

Point C Pool = Σ Carbon Density depth

Total Pool = Point Pool x Wetland Area
Soil Carbon Storage Top 1 meter

Soil Carbon Storage Full Soil Profile

Annual Rate of Carbon Storage

McLeod et al. 2011, Frontiers

Soil Elevation Tables

Salinity Proxy for Methane Emissions

Holm et al. (2016) *Wetlands* Poffenbarger et al. (2011) *Wetlands*

Soil Carbon Lost To Erosion Site

Inclusion of Coastal Wetlands into the U.S. Inventory of GHG Emissions & Sinks

Stephen Crooks

Silvestrum Climate Associates Tom Wirth U.S. Environmental Protection Agency Tiffany Troxler Florida International University Nate Herold, Meredith Muth, Ariana Sutton-Grier, Amanda McCarty National Oceanic & Atmospheric Administration Blanca Bernal, James Holmquist & Pat Megonigal Smithsonian Environmental Research Center Steve Emmett-Mattox, Stefanie Simpson Restore America's Estuaries

Blue Carbon: Integrating Data Applied to IPCC Emissions Factors and Carbon Markets. 12th International Symposium on Biogeochemistry of Wetlands *April, 25, 2018*

United States: Emissions of Interest

- Emissions and removals of CO₂ and CH₄ on intact and restoring wetlands.
- Drainage and excavation activities
- Conversion of wetlands to open water
- Forestry activities on wetland soils
- CH₄ emissions from impounded waters
- Aquaculture

•National Coastal Land Cover Monitoring Program

-Updated every five years since 1996

Based on Landsat imagery (30m)

 Regional to county scale in scope

 Consistent, Accurate Products

 FGDC National Geospatial Data Asset

 25% of the contiguous U.S. (CONUS)

 Coastal expression of the NLCD

Additional Coastal Detail

–Focus on wetland categories

-More dates / longer time series

Extent of Coastal Land Area

Tide data Lidar surface C-CAP land cover

New Orleans – Mississippi River, LA

Chesapeake Bay – Blackwater National Wildlife Refuge, MD

San Francisco Estuary, CA

Connecting Blue Carbon to Carbon Markets

Wetlands Restoration and Conservation (WRC)

Adopted into Standard Oct 4, 2012 http://v-c-s.org/wetlands restoration conservation

Other Categories:

Afforestation, Reforestation, Revegetation (ARR)
Agricultural Land Management (ALM)
Improved Forest Management IFM)

•Reduced Emissions from Deforestation and Degradation (REDD)

 How are wetlands valued by local landowners and resource managers? What are current threats or opportunities for wetland conservation?

Blue Carbon and the science and the methods used to track greenhouse gases in a New **England salt marsh** James Rassman Tonna-Marie Surgeon-Rogers

WAQUOIT BAY NATIONAL ESTUARINE RESEARCH RESERVE

Advancing ocean & estuarine literacy

BWM 1 – Science – Methodology -Modeling

1

3

2

BWM 2 – Model Generalization – Science -Carbon Project Feasibility Analysis "If the world is to decisively deal with climate change every source of emissions and every option for reducing these should be scientifically evaluated and brought to the international community's attention."

Report: Blue Carbon – The Role of Healthy Oceans in Binding Carbon, UNEP (2009)

It's not just about blue carbon... all ecosystem services

Where is the Carbon?

"Seeing" the Carbon in a New England Salt Marsh

GHG flux measurement

Diurnal pattern of CO2 fluxes

In tidal wetland carbon and GHG budgets we also need to consider the lateral fluxes: C fluxes may be large...

Measuring Lateral Fluxes in the Marsh

Water flux (u x A), m³/s: -High-frequency measurements to reduce error -Maximum channel coverage -Consistent procedure

Concentration (c), mg/m^{3:} -Sufficient vertical/lateral sampling

Total flux (u x A x c), mg/s

Biomass, Accretion, and Storage

What do you need to know to predict Carbon Storage

Degradation/Restoration

Blue Carbon Calculator:

A Simple Methodology for Determining the Greenhouse Gas (GHG) Impact of Aquatic Ecological Restoration Projects

Coastal wetlands capture and bury carbon at high rates. This carbon is called blue carbon. Restored salt marshes are especially capable of sequestering blue carbon and reducing harmful methane emissions. The Blue Carbon Calculator is a first-generation tool to assess GHG impacts of aquatic ecological restoration projects, with a focus on coastal wetlands.

It's Simple!

1. Enter Expected Land Cover Changes

The user enters the land area for each type of land cover change resulting from a project.

2. See the Green House Gas Budget

Annual emissions resulting from each change in land cover are calculated based on internationally accepted data. Results appear on the "Calculator" worksheet.

.

Damde Meadows, a salt marsh restoration in Hingham, has major blue carbon benefits equal to capturing 120,000 gallons of gas over 50 years.

How Does it Work?

As tides are restored, methane (CH₄) emissions decline as a site converts from a freshwater to a saltwater environment. Carbon is stored in the soils more readily under a healthy marsh condition.

iource: Figure adapted from http://ca.unater.ungs.gov/projects/2009-05.htm

For more information and to download the calculator visit: <u>mass.gov/der</u>

Bringing Wetlands to Market Methodology and guidance

RAE:

- Tidal Wetland GHG Offset Methodology
- Guidance to parallel with methodology
- Outreach/ collaboration

\$2.0 B

Market based payments for forest carbon since early 2000s

Carbon Project Cycle

Objectives of Feasibility Study

Questions to answer: 1.What are the costs, benefits, risks, of developing a carbon project to help finance restoration of blue carbon ecosystem? 2.What is the opportunity to help

2.What is the opportunity to help finance broader restoration of similar ecosystems across the region?

Carbon Project Feasibility

Acknowledgements:

- USGS Kevin Kroeger, Meagan Gonneea
- Marine Biological Laboratory Jianwu (Jim) Tang
- Univ. of Rhode Island Serena Moseman-Valtierra
- Florida International University\West Virginia University-Omar Abdul-Aziz
- Manomet Center for Conservation Sciences Tom Walker
- Restore America's Estuaries Steve Emmett-Mattox, Steve Crooks
- The Friends of Herring River
- Herring River Restoration Committee
- Many state and local stakeholders
- NERRS Science Collaborative
- National Estuarine Research Reserve Association
- Waquoit Bay National Estuarine Research Reserve Staff

(E	NATIONAL ESTUARINE Research Reserve System Science Collaborative
----	--

THE UNIVERSITY OF RHODE ISLAND

WBNERR Presentation

 Are stakeholders currently aware of wetland ecosystem services or financial incentives for conservation? Are there specific strategies for engagement and awareness building that would work best for our local landowners?

NATIONAL ESTUARINE Research Reserve System Science Collaborative

Smithsonian Environmental **Research** Center

Wrap up and Next Steps July 18-20 Field Based Workshops