## Drones can revolutionize research and monitoring...can't they?

Photo by Bertrand Bouchez on Unsplash

# **Drone the SWMP** assessing the utility of drones for wetland monitoring

### Project team



























**Brandon Puckett** Project lead NC NERR

Whitney Jenkins Collaborative lead

Justin Ridge Technical lead Duke University

Erik Smith Pilot, End User NI-WB NERR

**Denise Sanger** End User ACE Basin NERR

**Rachel Guy** Pilot, End User Sapelo NERR

Scott Eastman Pilot, End User GTM NERR

Milton Munoz Pilot, End User Jobos Bay NERR

Angel Dieppa End User Jobos Bay NERR

John McCombs Technical Advisor NOAA OCM

**Bryon Toothman** End User NC NERR

**Hope Sutton** End User NC NERR

**Ernesto Olivares** End User Jobos Bay NERR

### Benefits of using drones for wetland monitoring?

- with **customizable sensors**, at **user-defined intervals**.
- Fig. A) and **leave 'scars'** from trampling (Fig. B).



### Can drones be used for wetland monitoring?

- In salt marshes and mangroves located within the six **NERRs of the Southeast and Caribbean**, we will conduct drone surveys and image analysis to:
  - Estimate species-specific percent **cover** (Fig. D) and **canopy height** (Fig. E)
  - Delineate **ecotones** (e.g., low to high marsh)
- Generate digital **elevation models** (Fig E.)
- Estimate species-specific **biomass**
- Ground-based **field surveys** (largely following SWMP biomonitoring protocols) will be used to **validate** drone-derived estimates.

## Project timeline, outputs and outcomes?

Project timeline and workflow

| Oct 20 | May-Aug 21                         | June-Nov 21     |
|--------|------------------------------------|-----------------|
| Start! | Drone and ground-<br>based surveys | Analyze imagery |

- archive of high-resolution imagery of reserve sentinel sites
- efforts
- Funding: NERRS Science Collaborative Catalyst Grant
- vegetation height using unoccupied aircraft systems and structure from motion. Remote Sensing, 12: 2333.

• Drones may improve wetland monitoring by providing **high** spatial **resolution** and coverage,

• Ground surveys along permanent **transects** and **plots** can **miss features** (e.g., marsh die-offs;

• Satellites can provide insufficient resolution to detect species composition (Fig. C right panel) or delineate **ecotones**, whereas drones provide cm-scale resolution (Fig C left panel).



Figure D. Drone image (underlay) with green dots representing pixels with vegetation (overlay) to estimate percent cover (from <sup>2</sup>DiGiacomo et al. 2020).

Figure E. Two elevation models from drone imagery—digital surface model (DSM) and digital terrain model (DTM). Their difference represents canopy height (from <sup>2</sup>DiGiacomo et al. 2020).



• Outputs: Protocol for drone-based wetland SWMP toolkit, monitoring products (e.g., Fig D-E),

• Outcomes: A path to operationalize the use of drones for wetland monitoring in the NERRS complimenting existing SWMP (vegetation and habitat mapping) and sentinel site monitoring

• References: <sup>1</sup>Bickford, Susan, and Lindsay Spurrier. 2016. The Way Forward: Unmanned Aerial Systems for the National Estuarine Research Reserves. NERRS Technical Report. 64pp. <sup>2</sup>Digiacamo, AE et al. 2020. Modeling salt marsh