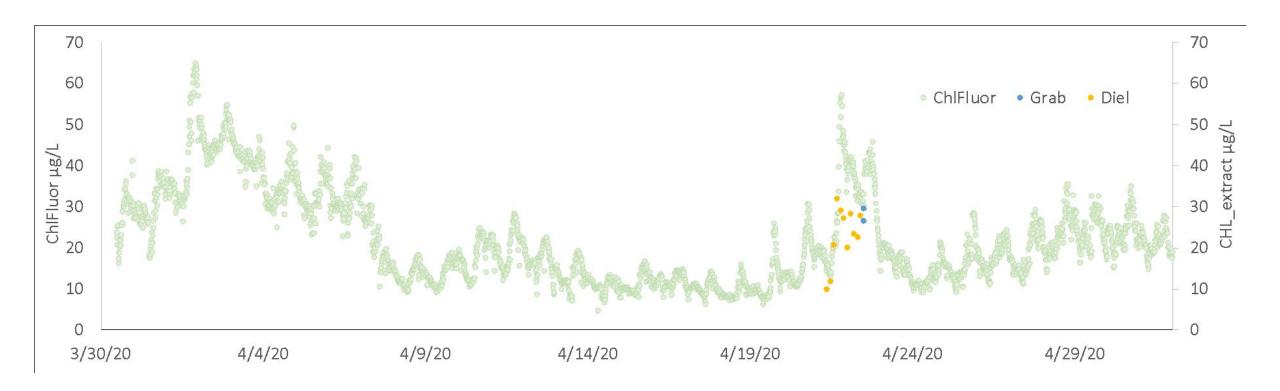
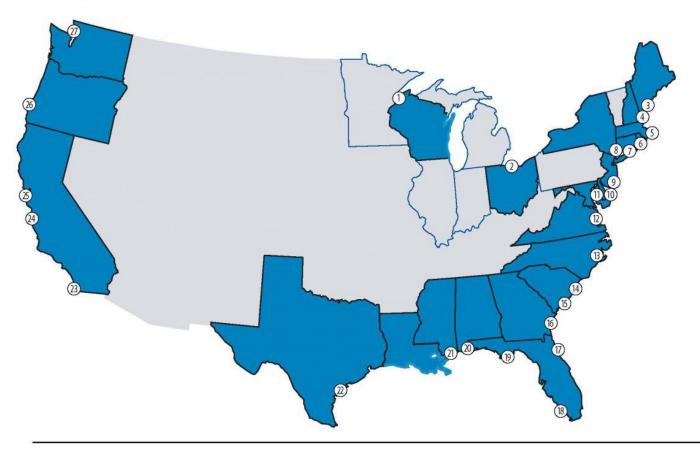
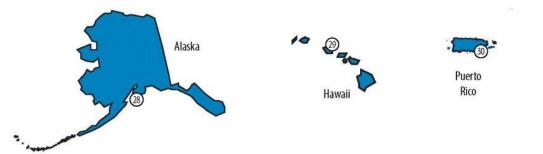
Refining techniques for high-frequency monitoring of chlorophyll *a* in the National Estuarine Research Reserve System

Nikki Dix, Erik Smith, Silas Tanner, Shannon Dunnigan, Hannah Ramage, Kim Cressman, Steven McMurray, Jacob Cianci-Gaskill, Rikke Jeppesen, Yoshimi Rii, Rachel Guy, Cammie Hyatt, Nicole Burnett, Cassie Porter, Jeremy Miller, Tom Gregory, Silvia Yang, Thompson Rose, Kelley Savage, Sebastian Mejia



NATIONAL ESTUARINE RESEARCH RESERVES





Great Lakes

- 1. Lake Superior, Wisconsin
- 2. Old Woman Creek, Ohio

Northeast

- 3. Wells, Maine
- 4. Great Bay, New Hampshire
- 5. Waquoit Bay, Massachusetts
- 6. Narragansett Bay, Rhode Island
- 7. Connecticut

Mid-Atlantic

- 8. Hudson River, New York
- 9. Jacques Cousteau, New Jersey
- 10. Delaware
- 11. Chesapeake Bay, Maryland
- 12. Chesapeake Bay, Virginia

Southeast

- 13. North Carolina
- 14. North Inlet-Winyah Bay, South Carolina
- 15. ACE Basin, South Carolina
- 16. Sapelo Island, Georgia
- 17. Guana Tolomato Matanzas, Florida

Gulf of Mexico

- 18. Rookery Bay, Florida
- 19. Apalachicola, Florida
- 20. Weeks Bay, Alabama
- 21. Grand Bay, Mississippi
- 22. Mission-Aransas, Texas

West

- 23. Tijuana River, California
- 24. Elkhorn Slough, California
- 25. San Francisco Bay, California
- 26. South Slough, Oregon
- 27. Padilla Bay, Washington
- 28. Kachemak Bay, Alaska

Pacific

29. He'eia, Hawai'i

Caribbean

30. Jobos Bay, Puerto Rico

PROPOSED

Bay of Green Bay, Wisconsin Louisiana

System-Wide Monitoring Program

Chlorophyll a

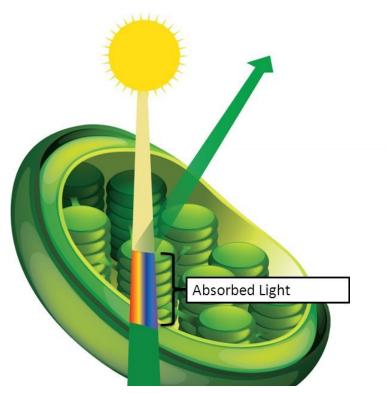
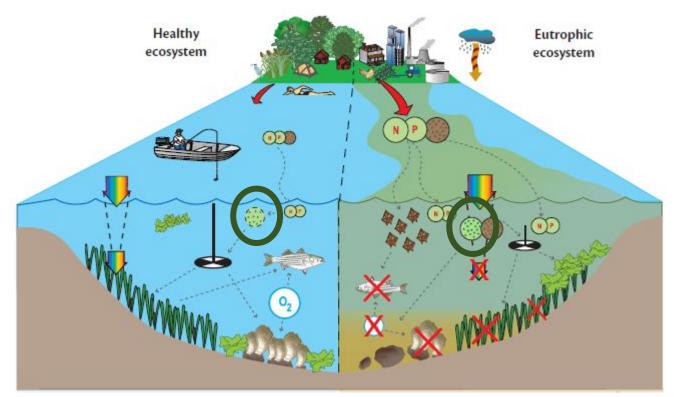


Image credit: https://slideplayer.com/slide/3922722/



Bricker et al. 2007. Effects of Nutrient Enrichment In the Nation's Estuaries: A Decade of Change. NOAA Coastal Ocean Program Decision Analysis Series No. 26. National Centers for Coastal Ocean Science, Silver Spring, MD. 328 pp.

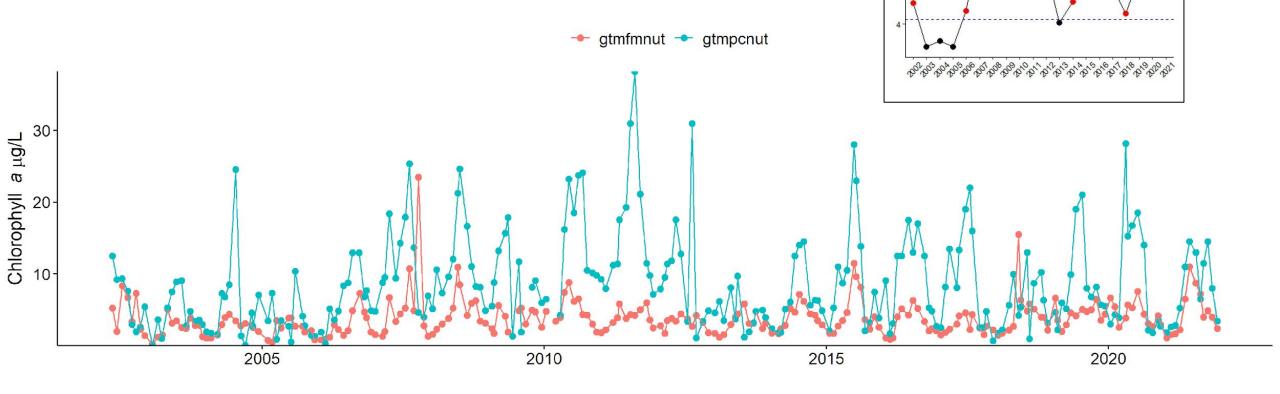
Monthly Discrete Monitoring

Pellicer Creek

State Threshold 4.3 (µg/L)

Valuable for

- Long-term trends
- Seasonality
- Trophic status



Extracted Chlorophyll a

In situ chlorophyll a

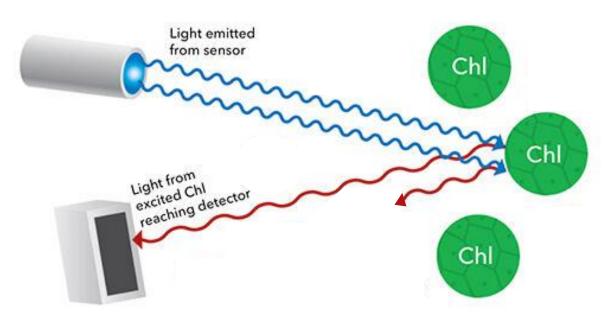
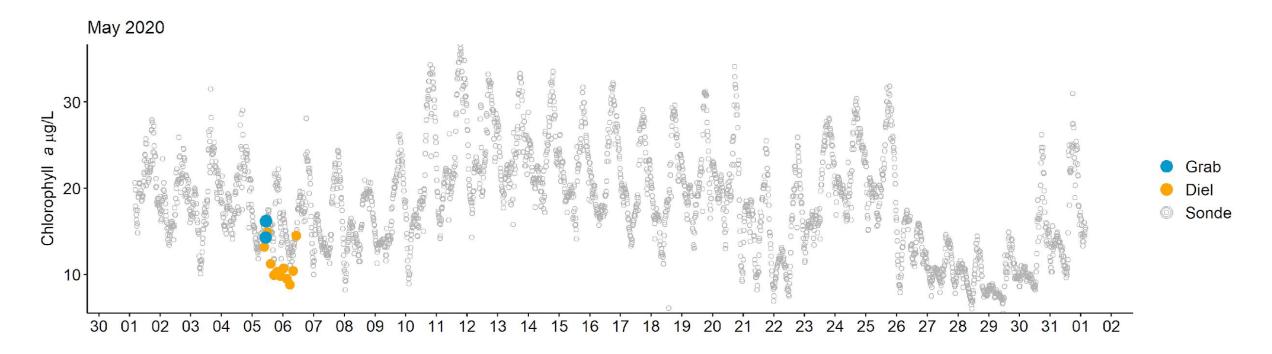


Image credit: www.ysi.com

In situ chlorophyll a

Valuable for

- Short-term plankton dynamics
 - Light, tides, flow, storms, etc.
- Bloom detection



In situ chlorophyll a

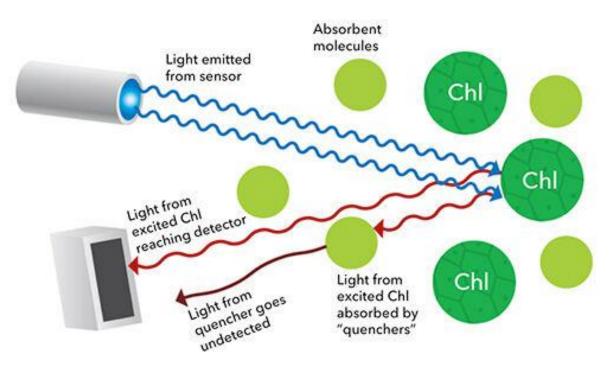


Image credit: www.ysi.com

Chlorophyll Catalyst Project

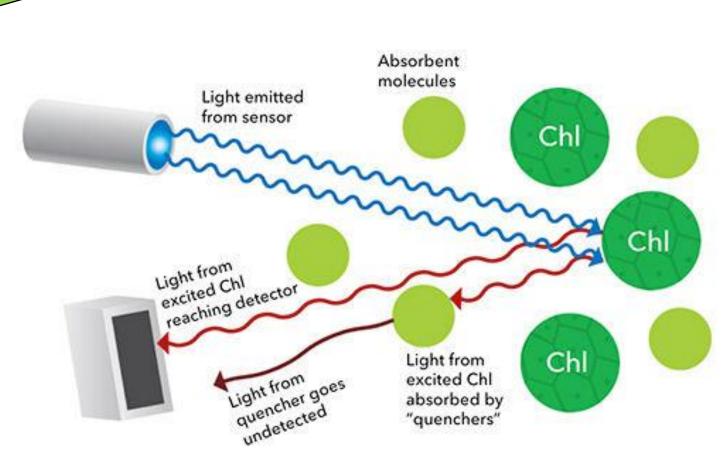
Purpose:

Assess the YSI EXO TAL sensor performance and make recommendations for the NERRS regarding inclusion of high-frequency, in situ chlorophyll a measurements in the SWMP

Dec 2020 – Feb 2022



Question 1: How do temperature, turbidity, and FDOM influence CHL-A fluorescence (RFU) measured with the YSI EXO TAL sensor?



Methods – Interference Experiments

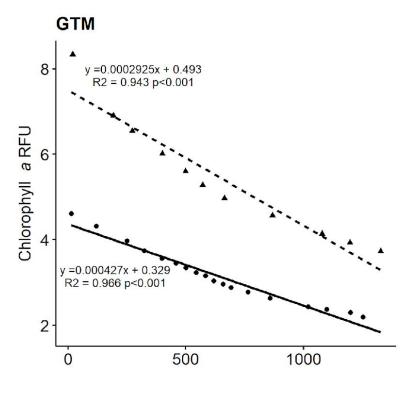
Turbidity experiment at North Inlet

Turbidity standard

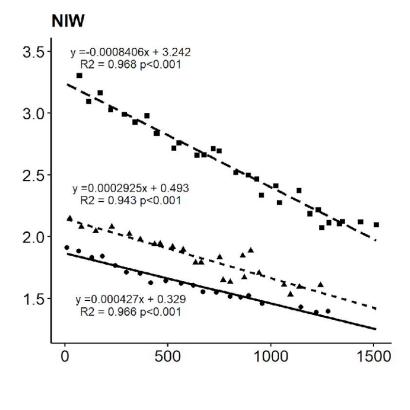
FDOM standards

FDOM experiment at Lake Superior

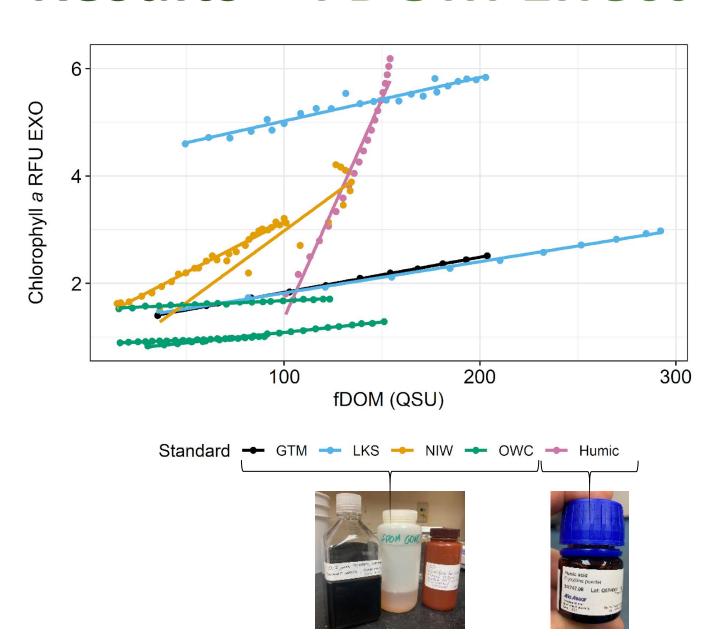
Results – Turbidity Effect



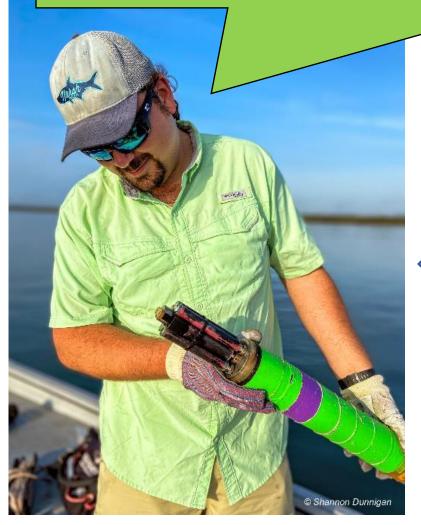




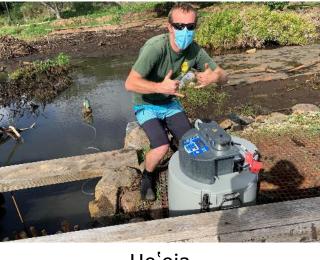
Results – FDOM Effect

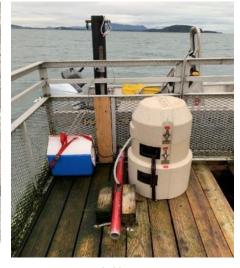


Question 2: How can we best predict extracted CHL-A (μg/L) from the suite of YSI EXO sensors?



Methods – Field-Based Comparisons





GTM

He'eia

Padilla Bay

Wells

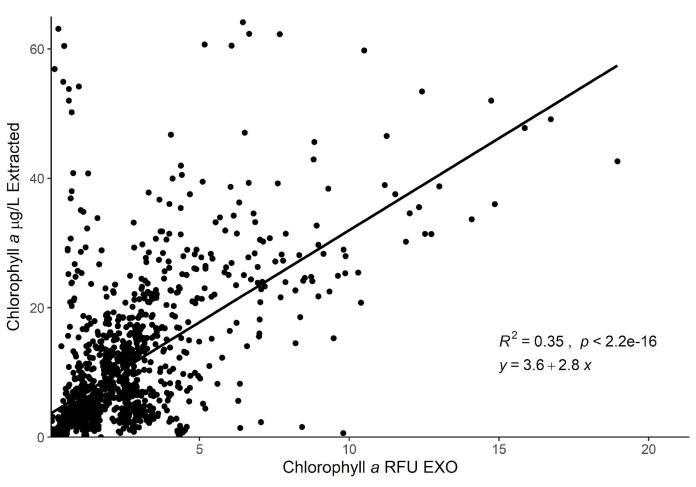
Methods – Lab-Based Comparisons

North Inlet

He'eia

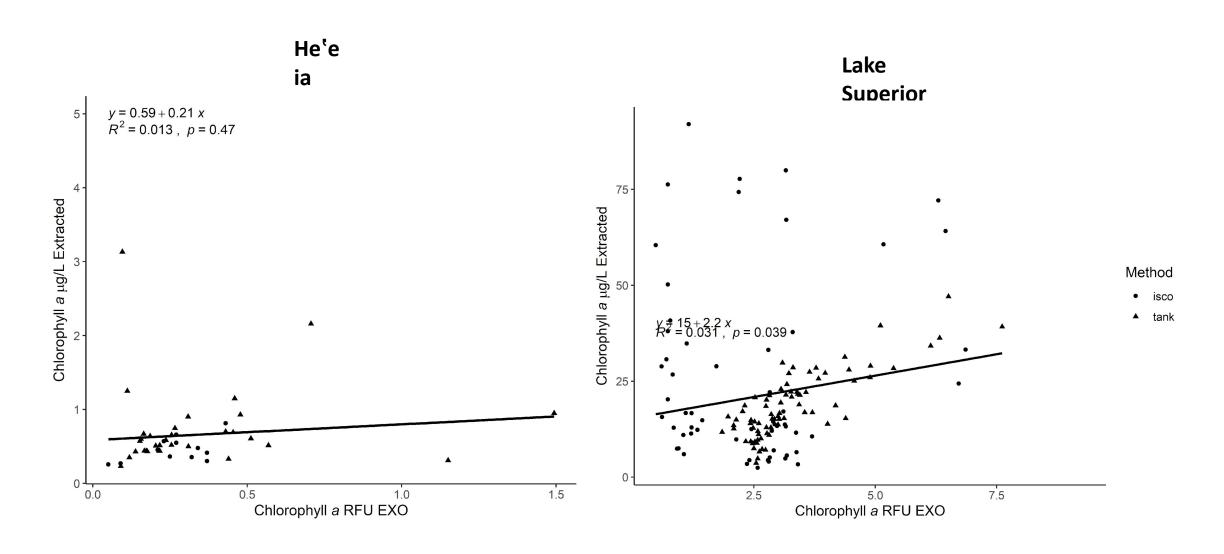
Mission Aransas

Results - Comparisons

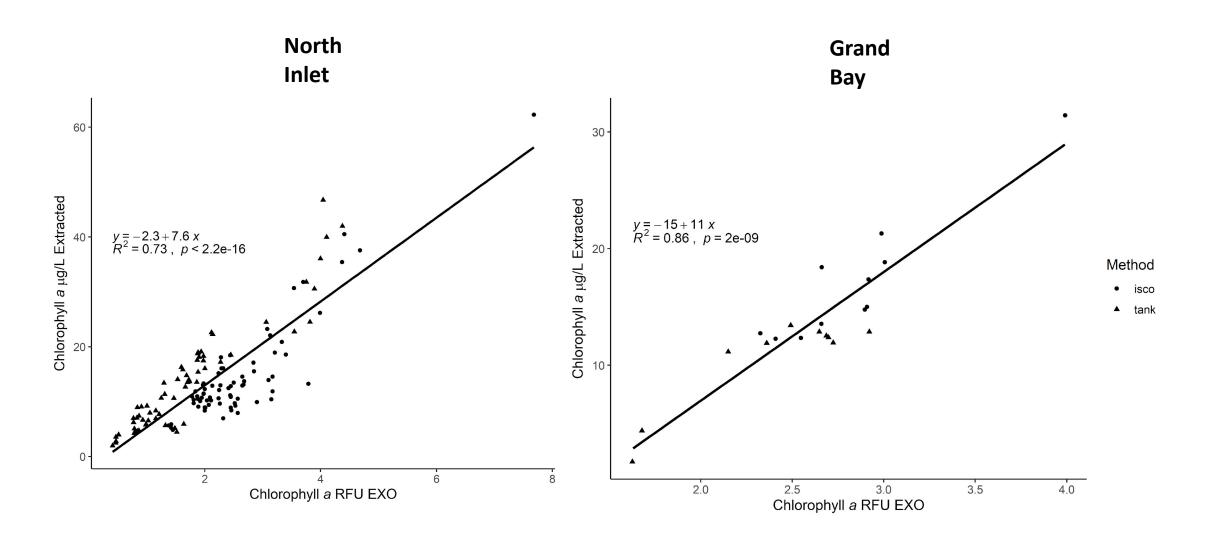


ISCO and Tank experiments

Results - Comparisons



Results - Comparisons



Methods – Data Analysis

Main question

How can we best predict extracted CHL-A (μ g/L) from the suite of YSI EXO sensors?

Models

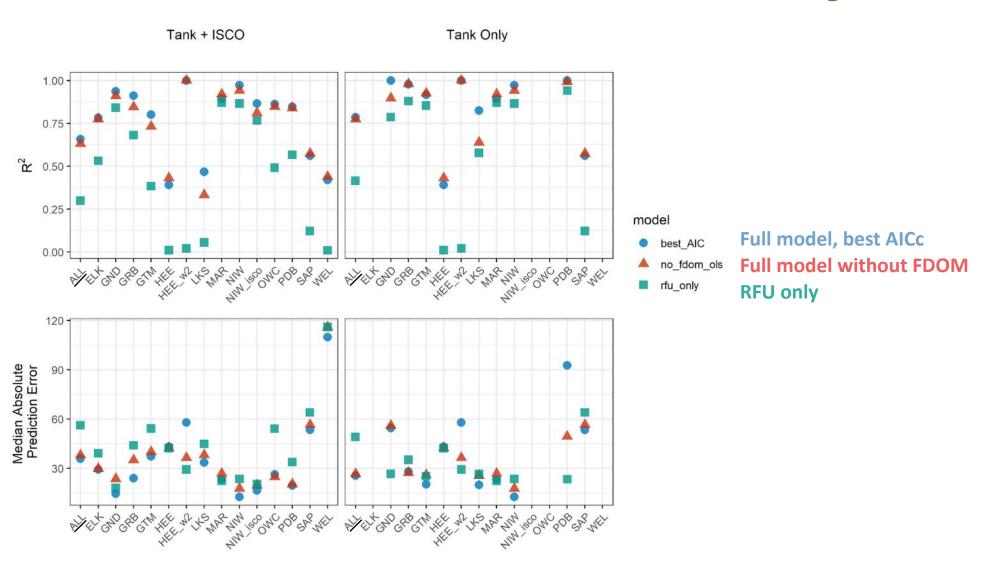
- both national and site-specific
- Ordinary Least Squares Linear Regression using data from comparisons

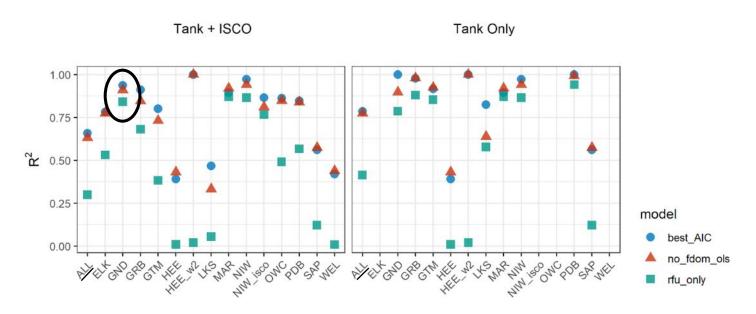
```
Chl_extracted ~ chl_RFU + reserve + season + turb + FDOM + temp + interactions...
```

- Square root transformation
- AICc to pick "best" model

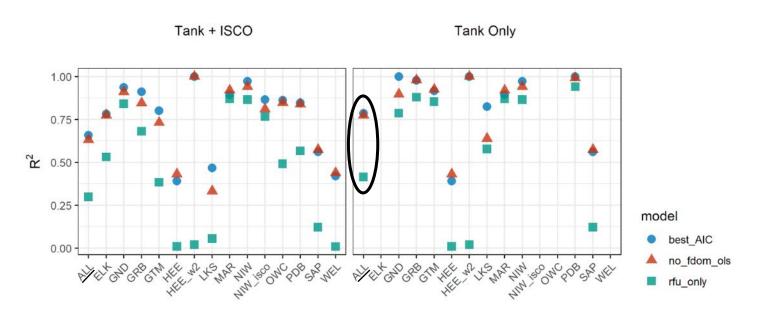
```
Chl_extracted ~ chl_RFU + reserve + season + turb + temp + interactions...
Chl_extracted ~ chl_RFU
```

• R² & prediction error to compare to "best" model

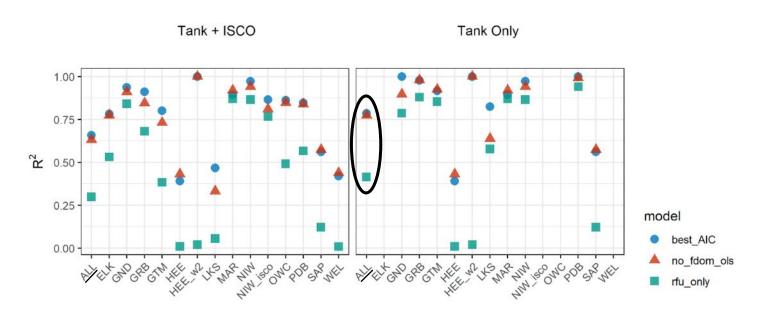




prediction										tdom_qsu. X.Intercept fdom_qsu. fdom_qsu.t fdom_qsu.t sensor_rfu. sensor_rfu.								
Reserve	model	R.2	error	_	fdom_qsu	turb	season	temp		sensor_rfu	emp	urb	temp	turb	turb			
ELK	best_AIC	0.782	29.3	0.365	0.0242	-0.0201	+	0.2324	-1.216	-0.012	NA	NA	NA	NA	NA			
ELK	no_fdom_ols	0.775	29.9	0.497	NA	0.0247	+	0.2605	-1.448	NA	NA	NA	-0.0105	-0.0166	NA			
ELK	rfu only	0.531	39.2	0.41	NA	NA	NA	NA	2.161	NA	NA	NA	NA	NA	NA			



															iuoiii_qsu.
		prediction	า				X.Intercept fdom_qsu. fdom_qsu. fdom_qsu. sensor_rfu sensor_rfu								
model	R2	_error	sensor_rfu	ı fdom_qsu	turb	season	reserve	temp	•	sensor_rfu	temp	turb	.temp	.turb	.turb
best_AIC	0.79	25.7	0.231	0.0032	0.1254	NA	+	0.0266	1.15	0.0013	-6e-04	NA	0.0172	-0.0265	NA
no_fdom_ols	0.77	26.7	0.414	NA	0.1085	+	+	-0.0214	1.33	NA	NA	NA	0.0102	-0.0238	NA
rfu_only	0.41	49.1	0.388	NA	NA	NA	NA	NA	2.18	NA	NA	NA	NA	NA	NA



													tdom_qsu.			
		prediction	า					X.Intercept fdom_qsu. fdom_qsu. fdom_qsu. sensor_rfu sensor_rfu								
model	R2	_error	sensor_rfu	fdom_qsu	turb	season	reserve	temp		sensor_rfu	temp	turb	.temp	.turb	.turb	
best_AIC	0.79	25.7	0.231	0.0032	0.1254	NA	+	0.0266	1.15	0.0013	-6e-04	NA	0.0172	-0.0265	NA	
no_fdom_ols	0.77	26.7	0.414	NA	0.1085	+	+	-0.0214	1.33	NA	NA	NA	0.0102	-0.0238	NA	
rfu only	0.41	49.1	0.388	NA	NA	NA	NA	NA	2.18	NA	NA	NA	NA	NA	NA	

Conclusions

- Temperature, turbidity, and FDOM influence CHL-A (RFU) readings from the YSI EXO TAL sensor.
- Correcting CHL-A (RFU) using data from the accessory sensors is not straightforward.
- Overall, when CHL-A RFU and extracted CHL-A were measured simultaneously, linear models of CHL-A RFU explained 40% of the variance in extracted CHL-A. Predictive capability increased when other sensor data were included ($R^2 = 0.79$).
- The amount of variance not explained by the model is likely a combination of species composition, chlorophyll degradation, light history, and interferences
- Site-specific factors are important in determining the strength and the drivers of the relationship between CHL-A RFU and extracted CHL-A.

Recommendations

- We recommend NERRS begin implementing high-frequency chlorophyll monitoring system-wide, but this sensor is not a direct substitute for extractive CHL-A analysis.
- Recommendations for whether and how NERRs and others choose to implement the EXO TAL sensor depend on the chlorophyll monitoring goals for each individual station and resources available.

Project Page

https://nerrssciencecollaborative.org/project/Dix20

Webinar April 19 @ 3:30

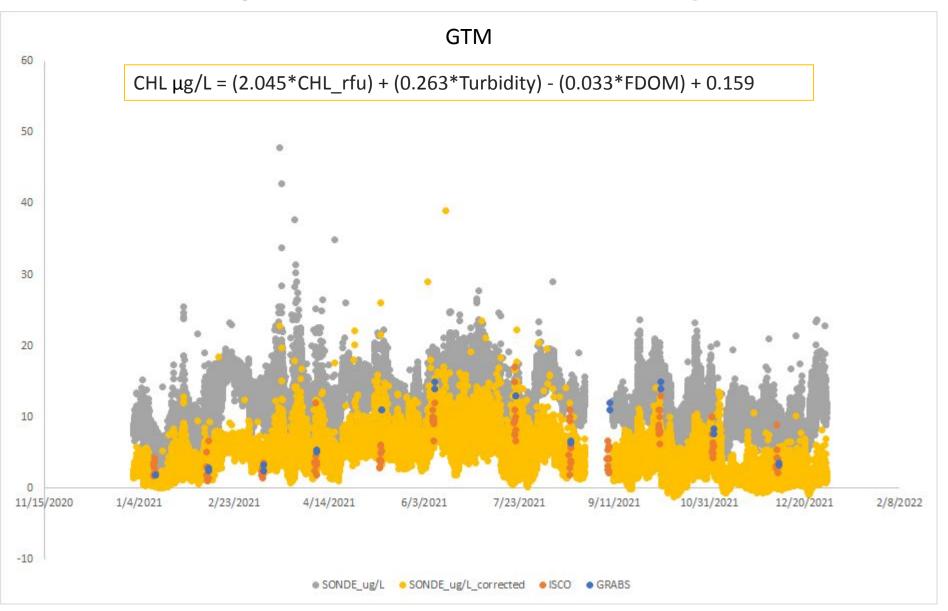
https://nerrssciencecollaborative.org/webinar-series

Contact me: Nikki.Dix@FloridaDEP.gov

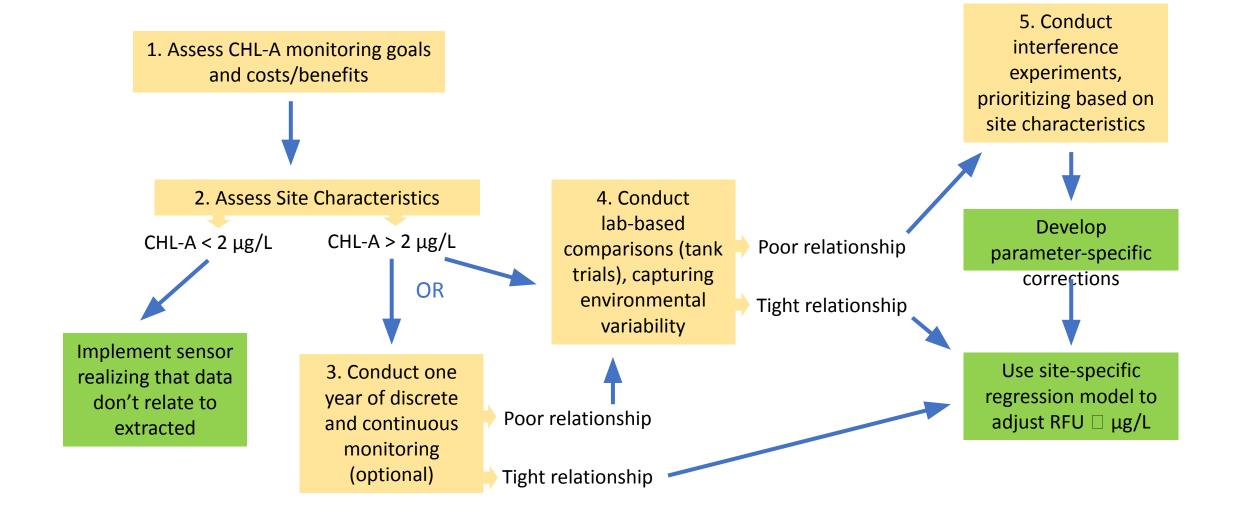
Camille Wheeler poster #19

Using Chlorophyll fluorescence sensors to investigate temporal dynamics in two contrasting ecosystems in the North Inlet-Winyah Bay National Estuarine Research Reserve

Adjustment Example



Recommendations



Considerations

- All CHL-A methods have caveats about estimating phytoplankton biomass (e.g., photoacclimation, quenching).
- There is more potential for erroneous readings with *in-situ* CHL-A because of interferences.
- Monthly CHL-A measurements are not frequent enough to capture plankton dynamics.
- Potential applications for real-time in-situ CHL-A data
 - More research (ecosystem metabolism, HAB prevention, etc.)
 - HAB early detection, rapid response (if telemetered)
- Costs
 - TAL sensor \$3,150
 - FDOM sensor \$2,394
 - Calibration time
 - Waste

Results – Temperature Effect

