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Rough Draft 

Model Description 

Overview 

The model was developed to simulate the population dynamics of blue crabs in Aransas and 

Copano bays in response to selected environmental and management variables identified by the 

stakeholders who participated in the Mission-Aransas National Estuarine Research Reserve 

Progam.  In the model, Aransas and Copano bays are divided into 139, approximately 1.5km x 

1.5km, spatially-explicit grid cells, and crab population levels fluctuate weekly as the result of 

recruitment, growth, movement, natural mortality, and fishing mortality.  Under environmental 

conditions typical of these bays, juvenile crabs appear in Aransas Bay from the middle of May 

through November.  Larval stages are not represented explicitly.  Crabs increase carapace width 

with each molt, with molting frequency depending on water temperature.  Crabs are considered 

sub-adults when they complete their 12th molt and are considered adults when they complete 

their 20th molt.  Juvenile crabs move toward the mouth of the Aransas River, sub-adults and 

adult males move randomly within Aransas Bay and Copano Bay, and adult females move 

toward the sea.  Rates of movement are stochastic and are slightly faster during warmer months 

(April through October) than during cooler months (November through March).  Natural 

mortality rate, which is based on maximum longevity, is constant and independent of size.  

However, crabs also die if exposed to lethal water temperatures or if they become too old, and 

the maximum number of third instar juveniles that can survive is limited by the number of first 

instar juveniles in the system.  Fishing mortality rate is assumed to be the difference between 

natural and total mortality rates, with the later estimated empirically.  Rates of recruitment, 

growth, movement, natural mortality, and fishing mortality all are probabilistic. 

Environmental Conditions 

The time series of weekly water temperatures and salinities used in the model are based on data 

collected from 2007 to 2012 as part of the Mission-Aransas National Estuarine Research Reserve 

(MA-NERR) System-Wide Monitoring Program (SWMP).  The SWMP consists of five 

sampling stations distributed throughout the MA-NERR, four of which are located within 

Aransas and Copano bays (Fig. 1).  These stations record water temperature and salinity at 15-

minute intervals.  Since water temperatures tended to be homogeneous throughout the bays 

during any given week, and seasonal patterns were quite similar from year to year, we calculated 

a single water temperature for each week of the year as the weekly mean of the values recorded 

during that week at all stations over all six years, and assigned this single mean value to each of 

the 139 grid cells.  Since salinity exhibited more spatial and temporal variability, we calculated a 

different time series of weekly salinities for each grid cell for years representative of (1) high, (2) 

low, and (3) normal freshwater inflows, respectively (139 grid cells x 3 types of years = a total of 

417 time series).  We identified the data used to represent high-inflow years (2007 and 2010) and 

low-inflow years (2009, 2011, and 2012) based on histograms of all of the salinity values in the 

data set for each year (Fig. 2), and we used all of the data from 2007 to 2012 to represent normal 

years.  Using each of the three subsets of data, we calculated the mean salinity for each sampling 
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station for each week of the year, and assigned these mean values to the grid cells in which the 

sampling station was located.  We then calculated salinity values for the grid cells located along 

straight lines running between sampling stations along the long axis of each bay (the red lines in 

Fig. 1) via linear interpolation.  Finally, we sequentially calculated salinity values for the rest of 

the grid cells as the means of the values of adjacent cells as we moved perpendicularly away 

from the straight lines connecting the sampling stations.  Since graphs of the resulting weekly 

time series appeared a bit erratic, for purposes of visualization, we smoothed the curves by 

replacing the weekly values with four-week moving averages.  

Recruitment 

Juvenile crabs (first molt "J1s") appear in Aransas Bay from the middle of March (week 12) 

through November (week 48) (Ward, 2012).  Magnitude of recruitment of simulated crabs is 

calibrated such that a 10-year simulation will run in approximately 2 minutes on a personal 

computer (recruitment-index = 100, i.e., 100 J1’s are added to a randomly-chosen cell in Aransas 

Bay each week during the recruitment period).  Note that the magnitude of recruitment of 

juveniles is not related to the number of mature females.  This is based on the "saturation 

hypothesis" (e.g., Caley et al. 1996), which assumes that all habitats are filled with megalops, 

and subsequent densities of juveniles are governed entirely by the environment. 

Growth 

Crabs increase carapace width with each molt, with molting frequency depending on water 

temperature.  The probability of molting is calculated as a function of the number of degree-days 

accumulated since the last molt (DDaccum), however, degree-days are accumulated only if the 

temperature is >= 10.8C (Brylawski and Miller, 2006).  Brylawski and Miller (2006) estimated 

probability of molting as: 

probability of molting = 0.669*ln(DDaccum) - 3.71  

Their equation was based on laboratory experiments and a field enclosure study, and represented 

observed crab growth in Chesapeake Bay well.  However, to achieve maturity within one year 

(Perry, 1975; Ward, 2012), assuming maturity occurs at the 20th molt (Van Engel, 1958), under 

water temperatures typical of Aransas and Copano bays, we decreased the slope of the equation 

to 0.65:   

probability of molting = 0.65*ln(DDaccum) - 3.71  

Brylawski and Miller (2006) estimated an average growth per molt of 119.5% .  However, to 

achieve a carapace width of 173mm by the 20th instar (Ward, 2012) under water temperatures 

typical of Aransas and Copano bays, we increased the growth-per-molt to 123.8%. 

Movement 
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Juvenile crabs move toward the mouth of the Aransas River, sub-adults and adult males move 

randomly within Aransas Bay and Copano Bay, and adult females move toward the sea (Ward, 

2012).  Rates of movement are stochastic and are slightly faster during the warmer months of 

April (week 14) through October (week 44) than during the cooler months of November (week 

45) through March (week 13).  During warmer months first to fifth instar juveniles, sixth to 

eleventh instar juveniles, sub-adults, adult males, and adult females move at velocities between 

zero and 0.5, 1, 1.5, 2, and 3 km / week, respectively; during cooler months first to fifth instar 

juveniles, sixth to eleventh instar juveniles, sub-adults, adult males, and adult females move at 

velocities between zero and 0.5, 0.5, 1, 1, and 1.5 km / week, respectively (Zack Darnell, pers. 

comm.).  We considered crabs to be sub-adults when they completed their 12th molt and adults 

when they completed their 20th molt.   

Natural Mortality 

Natural mortality rate (M) is based on maximum longevity (tmax in years) (Hewitt and Hoenig, 

2005): 

ln(M) = 1.44 - 0.982 * ln(tmax)  

and M = 4.22 / (tmax^0.982) (Hewitt and Hoenig, 2005) 

Assuming tmax = 8 yrs (Hewitt and Hoenig, 2005), M = 0.548/year. 

Converting from an annual rate to a weekly rate (Mwk):  

Mwk = 1 - (1 - M)^(1 / 52) = 1 - (1 - 0.548)^(1 / 52) = 0.015 

In addition to this baseline natural mortality rate, crabs also die when exposed to water 

temperatures <2C or >35.5C (Tagatz, 1968), or when their age exceeds 3 years (Texas Parks and 

Wildlife, 2009).  (Note that the tmax used to estimate natural mortality rate based on longevity 

refers to the maximum age ever observed in the stock, that is, physiological longevity (Hewitt 

and Hoenig, 2005), however, the vast majority of crabs in Texas waters die before reaching 3 

years of age (Texas Parks and Wildlife, 2009))  Finally, “excess” third instar juveniles die if the 

ratio of third to first instars in the system exceeds a threshold value.  Pile et al. (1996) empirically 

related the mean annual densities of third instar, fifth, seventh, and ninth instar larvae to the 

mean annual density of first instar larvae in Chesapeake Bay.  Drawing upon their density-

dependent relationships, we defined a maximum allowable ratio of third instars (J3s) to first 

instars (J1s), estimated as the mean ratio calculated from the three pairs of data points closest to 

the origin in their Fig. 6a (Pile et al. 1996, p. 287; (0.4285 / 0.125 = 3.428), (0.5714 / 0.3125 = 

1.82848), (1.1428 / 0.5 = 2.2856), (3.428 + 1.82848 + 2.2856) / 3 = 2.514).  When this ratio is 

exceeded (number of J3s / J1s > 2.514), an appropriate number of randomly-selected third instars 

die. 
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Total and Fishing Mortality 

Sutton and Wagner (2007) estimated an average annual (from 1982 through 2005) total 

instantaneous mortality rate (Z) for crabs in Aransas Bay of 1.17 (Sutton and Wagner 2007, 

Table 11, p. 35).  Thus, the finite annual total mortality rate = 1 - e ^ -Z = 0.689633, and the 

finite weekly total mortality rate = 1 - (1 - 0.689633)^(1 / 52) = 0.022.  Assuming that the fishing 

mortality rate is equal to the total mortality rate minus the natural mortality rate, we estimated 

the fishing mortality rate as 0.022 – 0.015 = 0.007.  Only crabs exceeding the legal harvest size 

(carapace width >= 127mm (5 inches), Ward 2012, Appendix C, p. C2) are harvested. 

Relation between simulated crabs and crabs sampled in the real system 

To relate simulated crabs to crabs sampled in the real system, we calibrated a conversion factor 

that determines the number of real crabs represented by each simulated crab (5000), as well as 

the relative “trapability” of different sized crabs sampled by a 38mm mesh otter trawl (Table 1), 

such that simulated samples were similar to observed samples collected from San Antonio Bay 

by the Texas Parks and Wildlife Department (using a 38mm mesh otter trawl) from 1982 to 

2008.  The conversion factor adjusts the overall magnitude of the simulated samples and the 

relative trapabilities adjust the size-class distribution of the crabs in the samples.  The rationale 

for the size-specific trapabilities is that crabs with a carapace width smaller than the mesh size of 

the trawl are less likely to be trapped, and larger, more mobile crabs that can flee from the 

approaching trawl are less likely to be trapped.  Neither the conversion factor nor the relative 

trapabilities affect model behavior, they only affect the presentation of simulation results. 

Model Verification 

We verified that the calibrated model was capable of producing reasonable patterns of crab (1) 

recruitment (juveniles appear in Aransas Bay from the middle of March through November; Fig. 

3), (2) growth (crabs achieve their 20th molt within approximately one year; Fig. 4), and (3) 

movement (juvenile crabs move toward the mouth of the river, sub-adults and adult males move 

randomly within the bays, and adult females move toward the sea, with rates of movement being 

slightly faster during the warmer months; Fig. 5) under water temperatures typical of Aransas 

and Copano bays.  We also verified that (4) unlimited growth of the simulated population was 

prevented by the density-dependent relationship between the third instars and the first instars (the 

population exhibited a dynamic equilibrium under water temperatures typical of Aransas and 

Copano bays; Fig. 6), and (5) estimates of crab densities and mean and median carapace widths 

based on simulated trawl samples were similar to estimates based on actual trawl samples 

collected from San Antonio Bay by the Texas Parks and Wildlife Department from 1982 to 2008 

(density estimates fluctuated seasonally between approximately 10 and 90 individuals / ha, and 

estimates of both the mean and median carapace widths fluctuated between approximately 40 

and 90mm; Fig. 7). 
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Model Evaluation 

After verifying that the model had been calibrated successfully to produce the expected 

(“targeted”) patterns of crab population dynamics and individual crab growth, we evaluated the 

capability of the model to simulate (1) annual Texas commercial crab landings for Aransas-

Copano Bay and (2) crab population biomass density estimates based on otter-trawl samples 

from Aransas-Copano Bay.  We also examined the sensitivity of model predictions of mean 

carapace width, population density, and annual harvest to both doubling and halving the 

estimated natural mortality rate.  Finally, we discuss our decision to omit explicit representation 

of two processes that initially were suggested for inclusion in the model: the effects of (1) 

changes in salinity and (2) predation by whooping cranes on crab population dynamics.   

 

Annual Texas commercial crab landings from 1996 to 2005 ranged from 56x10
3
 to 608x10

3
 kg 

(Table 9, p.32 in Sutton and Wagner 2007), whereas annual harvests simulated over a 10-year 

period under the baseline fishing mortality rate (0.007) and water temperatures typical of 

Aransas and Copano bays ranged between approximately 380x10
3
 and 450x10

3
 kg (Fig. 8).  Both 

mean and median simulated harvests (409x10
3
 and 404x10

3
 kg, respectively) were higher than 

mean and median observed landings (275x10
3
 and 295x10

3
 kg, respectively), and simulated 

harvests were less variable (standard deviation of the mean was 22x10
3
 kg compared to 190x10

3
 

kg for the observed landings).  These differences were due in large part to the extremely low 

commercial harvests in 1999 and 2000 (83x10
3
 and 56x10

3
 kg, respectively).  Crab population 

biomass density estimates based on otter-trawl samples from 1996 to 2005 ranged from 25 to 

130 mg/m
3
 (Fig. 34, p. 161 in Ward 2012), whereas simulated population biomass density 

estimates based on weekly simulated trawl samples fluctuated seasonally between approximately 

25 and 390 mg/m
3
 (Fig. 9a).  Mean annual estimates of simulated population biomass densities 

based on weekly simulated trawl samples were noticeably greater than estimates calculated from 

reported otter-trawl samples, although the latter fell within 2 standard deviations of the mean of 

annual estimates based on weekly simulated trawl samples (Fig. 9).  Doubling and halving the 

natural mortality rate had no noticeable effect on model predictions of mean carapace width, but 

population density was reduced by about 60% and predicted mean annual harvest by more than 

one-half when natural mortality rate was doubled, and population density was increased by about 

25% and predicted mean annual harvest more than doubled natural mortality rate was halved 

(Fig. 10).  Minimum and median predicted annual harvests were close to the mean and 

variability among harvest levels was relatively lower when natural mortality rate was doubled, 

whereas maximum and median predicted annual harvests noticeably exceeded the mean and 

variability among harvest levels was relatively higher when natural mortality rate was halved. 

 

Two processes that initially were hypothesized to play an important role in the population 

dynamics of crabs in Aransas and Copano bays were salinity changes resulting from changes in 

freshwater inflow and predation by whooping cranes.  The model still includes weekly changes 

in salinity patterns throughout the two bays under different inflow regimes (described above).  

However, salinity is not included explicitly in any of the equations that govern model behavior, 

although the effect of salinity is implicit in the rules governing the migration of the adult females 

toward the sea.  Predation by whooping cranes no longer is included in the model. 
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Salinity effects:  The effect of salinity changes resulting from changes in freshwater inflow on 

crab populations remains controversial, in large part because it often is viewed as an integral part 

of the debate over the levels of freshwater inflow required to maintain the health of bay 

ecosystems.  While it is certain that level of freshwater inflow affects bay salinity gradients, and 

that crab population level is an important indicator of bay health, available empirical evidence 

suggests that changes in crab population levels are not tightly linked to changes in salinity per se.  

A review of the literature on crab life history and physiology is beyond the scope of the present 

study, but we have provided quotes from each of two recent studies that summarize the rationale 

for not including salinity effects on crabs in the model in the appendix.   

Whooping crane predation:  While whooping cranes prey upon crabs and may have a noticeable 

local effect on crab densities near their winter territories, crane predation is unlikely to be an 

important factor affecting the population dynamics of crabs in Aransas and Copano bays.  Cranes 

are present only during winter and few are likely to forage in these bays.  Whooping cranes 

migrate south from Canada during fall, arriving at the Aransas National Wildlife Refuge 

(ANWR) in November, and leave ANWR on their spring migration back to Canada by April 

(Gil-Weir et al., 2012).  Cranes are territorial on their wintering grounds, with most of the 

territories located in the ANWR and on Matagorda Island, with perhaps 16 territories located on 

San José Island, which borders Aransas Bay (Stehn and Prieto 2010, Table 1, p. 42).  Assuming 

that (1) each of these 16 territories contains an adult male and an adult female (32 cranes), (2) all 

of these cranes arrive on day-of-year 305 and leave on day-of-year 91 (151 days feeding in 

Aransas Bay), and (3) all of these cranes satisfy 100% of their daily energy requirements by 

eating crabs, we can estimate the biomass of crabs that would be necessary to meet these energy 

requirements would be about 8x10^3 kg (Excel file: Crab calories, forSept2013sheet).  To put 

this into perspective, annual commercial crab harvests in Aransas Bay have been as high as 1232 

kgx10^3 (in 1980) and as low as 56 kgx10^3 (in 2000), with harvests from 2001 to 2005 ranging 

from 295 to 608 kgx10^3 (Sutton and Wagner 2007, Table 9, p. 32).  Based on field estimates of 

the percent of crane diets consisting of crabs – 0, 90, 28, 28, and 28 in November, December, 

January, February, and March, respectively, during the winter of 2004-2005, and 20, 0-7, 0-7, 0-

7, and 0-7 in November, December, January, February, and March, respectively, during the 

winter of 2005-2006 (Slack et al., 2009, pp. 138-139), more reasonable estimates of the biomass 

of crabs that would be necessary to meet the energy requirements of 32 cranes might range from 

about 3x10^3 kg (based on data from 2004-2005) to about 0.5x10^3 kg (based on data from 

2005-2006).  Assuming that a more reasonable estimate of the number of cranes foraging in 

Aransas and Copano bays might be around a half a dozen (Zack Darnell, pers. comm.), crane 

consumption of crabs might range from about 0.56x10^3 kg (based on data from 2004-2005) to 

about 0.01x10^3 kg (based on data from 2005-2006). 

Simulation of Environmental and Management Scenarios 
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We initially simulated the population dynamics of blue crabs in Aransas and Copano bays in 

response to the following six environmental and management scenarios: (1) normal, (2) low, and 

(3) high freshwater inflow, and (4) normal, (5) low, and (6) high fishing mortality.  To simulate 

each of the first three scenarios, we used as input (driving variables) to the model the time series 

of weekly water temperatures and salinities for each grid cell corresponding to the level of 

freshwater inflow being simulated, with all other variables set at their baseline values.  To 

simulate each of the second three scenarios, we set the fishing mortality rate its baseline level, 

twice its baseline level, and half its baseline level, with all other variables set at their baseline 

values.  During each simulation, we recorded model predictions of mean carapace width, 

population density, and annual harvests.  Since results of simulations run during model 

evaluation indicated that model predictions of population density and mean annual harvest were 

sensitive to changes in the estimate of natural mortality rate (Fig. 10), we also simulated each of 

the second three scenarios with natural mortality rate doubled and halved.   

Changing the time series of weekly water temperatures and salinities to represent normal, low, 

and high freshwater inflow scenarios had no noticeable effect on model predictions of mean 

carapace width, population density, or mean annual harvest, although the maximum annual 

harvest was slightly lower under low freshwater inflow conditions and slightly higher under high 

freshwater inflow conditions (Fig. 11).  Doubling and halving the fishing mortality rate 

(assuming the baseline natural mortality rate) had no noticeable effect on model predictions of 

mean carapace width or population density, but predicted mean annual harvest increased by 

about 75% when fishing mortality rate was doubled and decreased by almost half when fishing 

mortality rate was halved (Fig. 12).  Median predicted annual harvests were close to the mean 

and variability among harvest levels was relatively low for all three scenarios.  Predictions of the 

effects of the different fishing mortality rates were not changed noticeably when natural 

mortality rate was halved, and were not changed qualitatively when the natural mortality rate 

was doubled (Fig. 13).  However, with natural mortality rate doubled, predictions of population 

density were reduced by about half and predicted mean annual harvests decreased by about two 

thirds.  Predictions of mean carapace width were unchanged. 
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Table 1.  The relative “trapability” of different sized simulated crabs sampled by a simulated 

38mm mesh otter trawl (probability of a crab of a given size being sampled in any given week of 

simulated time). 

 

Stage Approximate Carapace Width (mm) Relative Trapability 

<= 11 < 23 0 

12 29 0.25 

13 36 1 

14 45 0.9 

15 57 0.8 

16 71 0.7 

17 89 0.5 

18 111 0.2 

19 139 0.01 

20 173 0.0001 
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Figure Legends 

 

Figure 1.  Map of Aransas and Copano bays indicating locations (yellow dots) of the four 

sampling stations that provided the data used to calculate the weekly water temperatures and 

salinities used in the model.  These stations are part of the Mission-Aransas National Estuarine 

Research Reserve (MA-NERR) System-Wide Monitoring Program (SWMP).  
 

Figure 2.  Histogram of the number of measurements in the data set for each year that fall into 

the indicated salinity category. 

  

Figure 3.  Seasonality of recruitment of first instar juvenile crabs simulated under water 

temperatures typical of Aransas and Copano bays.      

 

Figure 4.  Growth of crabs recruited as first-instar juveniles during the indicated week of the year 

simulated under water temperatures typical of Aransas and Copano bays.  Y-axis values 

represent the number of days between recruitment and completion of the 20th molt of 10 crabs 

chosen randomly from the simulated population. 

 

Figure 5.  Dispersion patterns of juvenile (yellow dots), sub-adult and adult male (black 

triangles), and (c) adult female (red triangles) crabs in (a) January and (b) June simulated under 

water temperatures typical of Aransas and Copano bays.   

 

Figure 6.  Crab population densities (individuals / ha; blue line) and the ratio of third to first 

instars (green line) simulated under water temperatures typical of Aransas and Copano bays.  

The maximum allowable ratio of third instars to first instars also is shown (red line). 

 

Figure 7.  Estimates of crab densities (individuals / ha; green line) and mean (blue line) and 

median (red line) carapace widths (mm) based on (a) actual samples collected from San Antonio 

Bay by the Texas Parks and Wildlife Department using a 38mm mesh otter trawl from 1982 to 

2008 (as summarized in Fig. 26, p.148 in Ward 2012), and (b) simulated samples collected using 

a 38mm mesh otter trawl under water temperatures typical of Aransas and Copano bays.  

 

Figure 8.  Mean, standard deviation, maximum, minimum, and median of annual Texas 

commercial crab landings for Aransas-Copano Bay (kg x 1000) recorded for the ten-year period 

from 1996 to 2005 (red bars; based on Table 9, p. in Ward 2012), and simulated annual harvests 

under the baseline fishing mortality rate (0.007) and water temperatures typical of Aransas and 

Copano bays (blue bars). 

Figure 9.  Comparison of annual crab population biomass density (mg/m^3) estimates based on 

otter-trawl samples from Aransas-Copano Bay collected from 1996 to 2005 (based on Fig. 34, p. 

161 in Ward 2012) with (A) weekly and (B) mean annual simulated population biomass density 

estimates based on simulated trawl samples.  In part A, the blue line indicates annual estimates 

based on actual trawl samples and the red line represents weekly estimates based on simulated 

trawl samples.  In part B, the blue line indicates annual estimates based on actual trawl samples, 
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the red line represents mean annual estimates based on simulated trawl samples, and green and 

purple lines represent plus and minus two standard deviations of the mean simulated estimates, 

respectively.  

Figure 10.  (a) Mean carapace width (mm), (b) density (individuals/ha), and (c) mean, standard 

deviation, maximum, minimum, and median of annual harvests of crabs simulated under the 

normal, low, and high natural mortality rates.  Blue, red, and green lines and bars represent 

normal, low (one-half normal) and high (twice normal) natural mortality rates, respectively. 

Figure 11.  (a) Mean carapace width (mm), (b) density (individuals/ha), and (c) mean, standard 

deviation, maximum, minimum, and median of annual harvests of crabs simulated under the 

normal, low, and high freshwater inflow scenarios.  Blue, red, and green lines and bars represent 

normal, low and high freshwater inflow scenarios, respectively. 

Figure 12.  (a) Mean carapace width (mm), (b) density (individuals/ha), and (c) mean, standard 

deviation, maximum, minimum, and median of annual harvests of crabs simulated under the 

normal, low, and high fishing mortality rates.  Blue, red, and green lines and bars represent 

normal, low (one-half normal) and high (twice normal) fishing mortality rates, respectively. 

Figure 13.  (a) Mean carapace width (mm), (b) density (individuals/ha), and (c) mean, standard 

deviation, maximum, minimum, and median of annual harvests of crabs simulated under the 

normal, low, and high fishing mortality rates, with natural mortality set at twice versus one-half 

its baseline value.  Blue, red, and green lines and bars represent normal, low (one-half normal) 

and high (twice normal) fishing mortality rates, respectively. 
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Figure 1.  Map of Aransas and Copano bays indicating locations (yellow dots) of the four 

sampling stations that provided the data used to calculate the weekly water temperatures and 

salinities used in the model.  These stations are part of the Mission-Aransas National Estuarine 

Research Reserve (MA-NERR) System-Wide Monitoring Program (SWMP).  
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Figure 2.  Histogram of the number of measurements in the data set for each year that fall into 

the indicated salinity category. 
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                                   weeks 

 

Figure 3.  Seasonality of recruitment of first instar juvenile crabs (individuals / ha) simulated 

under water temperatures typical of Aransas and Copano bays.      
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                      Week of recruitment as first-instar juveniles 

Figure 4.  Growth of crabs recruited as first-instar juveniles during the indicated week of the year 

simulated under water temperatures typical of Aransas and Copano bays.  Y-axis values 

represent the number of days between recruitment and completion of the 20th molt of 10 crabs 

chosen randomly from the simulated population. 
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A. January 

 

B. June 

 

 

Figure 5.  Dispersion patterns of juvenile (yellow dots), sub-adult and adult male (black 

triangles), and (c) adult female (red triangles) crabs in (a) January and (b) June simulated under 

water temperatures typical of Aransas and Copano bays.   
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                                                    weeks 

 

Figure 6.  Crab population densities (individuals / ha) simulated under water temperatures typical 

of Aransas and Copano bays. 
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A. Observed (San Antonio Bay) 

 

                                           weeks 

B. Simulated (Aransas and Copano Bays) 

 

                                                weeks 

Figure 7.  Estimates of crab densities (individuals / ha; green line) and mean (blue line) and 

median (red line) carapace widths (mm) based on (a) actual samples collected from San Antonio 

Bay by the Texas Parks and Wildlife Department using a 38mm mesh otter trawl from 1982 to 

2008 (as summarized in Fig. 26, p.148 in Ward 2012), and (b) simulated samples collected using 

a 38mm mesh otter trawl under water temperatures typical of Aransas and Copano bays. 
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             Mean      St.Dev.      Max.       Min.        Median 

 

Figure 8.  Mean, standard deviation, maximum, minimum, and median of annual Texas 

commercial crab landings for Aransas-Copano Bay (kg x 1000) recorded for the ten-year period 

from 1996 to 2005 (red bars; based on Table 9, p. in Ward 2012), and simulated annual harvests 

under the baseline fishing mortality rate (0.007) and water temperatures typical of Aransas and 

Copano bays (blue bars). 
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A. 

 

                                      weeks 

B. 

 

                                      years 

Figure 9.  Comparison of annual crab population biomass density (mg/m^3) estimates based on 

otter-trawl samples from Aransas-Copano Bay collected from 1996 to 2005 (based on Fig. 34, p. 

161 in Ward 2012) with (A) weekly and (B) mean annual simulated population biomass density 

estimates based on simulated trawl samples.  In part A, the blue line indicates annual estimates 

based on actual trawl samples and the red line represents weekly estimates based on simulated 

trawl samples.  In part B, the blue line indicates annual estimates based on actual trawl samples, 

the red line represents mean annual estimates based on simulated trawl samples, and green and 

purple lines represent plus and minus two standard deviations of the mean simulated estimates, 

respectively.  
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 A. Mean carapace width 

 

B. Density 

 

C. Annual harvest 

 

           Mean  St.Dev. Max.  Min.  Median 

 

Figure 10.  (a) Mean carapace width (mm), (b) density (individuals/ha), and (c) mean, standard 

deviation, maximum, minimum, and median of annual harvests of crabs simulated under the 
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normal, low, and high natural mortality rates.  Blue, red, and green lines and bars represent 

normal, low (one-half normal) and high (twice normal) natural mortality rates, respectively. 

A. Mean carapace width 

 

B. Density 

 

C. Annual harvest 
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Figure 11.  (a) Mean carapace width (mm), (b) density (individuals/ha), and (c) mean, standard 

deviation, maximum, minimum, and median of annual harvests of crabs simulated under the 

normal, low, and high freshwater inflow scenarios.  Blue, red, and green lines and bars represent 

normal, low and high freshwater inflow scenarios, respectively. 
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A. Mean carapace width 

 

B. Density 

 

C. Annual harvest 

 

           Mean  St.Dev. Max.  Min.  Median 

 

Figure 12.  (a) Mean carapace width (mm), (b) density (individuals/ha), and (c) mean, standard 

deviation, maximum, minimum, and median of annual harvests of crabs simulated under the 

normal, low, and high fishing mortality rates (with natural mortality rate at its baseline value).  

Blue, red, and green lines and bars represent normal, low (one-half normal) and high (twice 

normal) fishing mortality rates, respectively. 
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    Twice Baseline Natural Mortality Rate       One-half Baseline Natural Mortality Rate 

A. Mean carapace width 

 

B. Density 

 

C. Annual harvest 

 

           Mean  St.Dev. Max.  Min.  Median           Mean  St.Dev. Max.  Min.  Median 

 

Figure 13.  (a) Mean carapace width (mm), (b) density (individuals/ha), and (c) mean, standard 

deviation, maximum, minimum, and median of annual harvests of crabs simulated under the 

normal, low, and high fishing mortality rates, with natural mortality set at twice versus one-half 

its baseline value.  Blue, red, and green lines and bars represent normal, low (one-half normal) 

and high (twice normal) fishing mortality rates, respectively. 
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Appendix 

What follows are rather lengthy quotes from each of two recent studies that summarize the 

rationale for not including salinity effects crabs in the model.  The first quote comes from pp. vii-

viii in the Executive Summary in Ward (2012), which summarizes a wealth of published 

scientific information about blue crabs.  While the study was directed specifically at San Antonio 

Bay, it includes information specific to the other major bays along the Texas coast, as well as life 

history and ecological information about blue crabs which is generally applicable.  The second 

quote comes from Section 3.2.3, pp.42-43, in SAGES Final Report (Slack et al., 2009), which 

reports results of a large field study conducted at the Aransas National Wildlife Refuge. 

From pp. vii-viii in the Executive Summary in Ward (2012):   

“Evaluation of abundance versus salinity for individual trawl-event data, and for data averaged 

monthly and over the entire region of the (San Antonio) bay, disclosed no significant variation 

with temperature or salinity. The above annual pulse of abundance is out of phase with the 

annual rise and fall of temperature, so the lack of correlation between these variables is not 

surprising. With respect to salinity, blue crabs are osmoregulators that survive — even thrive — 

in a wide range of salinity. The only stage of the blue-crab life cycle that requires a narrow range 

of salinity and temperature is the larval, which needs the warm saline conditions of the ocean. It 

is seeking these salinity conditions that impels the post-insemination migration of the female to 

the sea. Otherwise, the blue crab is a remarkably effective osmoregulator, which accounts for its 

abundance from Sabine Lake to the Laguna Madre. This may also account for the general lack of 

a simple relationship between salinity and blue-crab density in the TPWD monitoring data for 

San Antonio Bay. Acclimation is important in the tolerance of the blue crab to a range of 

salinity. On the lower Texas coast, and in San Antonio Bay in particular, the main threat that 

salinity presents is its sudden reduction to zero during a major flood hydrograph. The ubiquity of 

blue crabs in the shallow, marshy regions of San Antonio Bay and other Texas estuaries, which 

are also typically low-salinity zones, may be for reasons other than lower salinity, as suggested 

by recent studies on decapod habitat use in estuaries. 

Freshwater inflow provides several mechanisms that could plausibly increase the abundance of 

blue crabs, besides moderating salinity, and therefore it is warranted to seek a direct relation 

between abundance and inflow. For San Antonio Bay, the correlation proved negligible, though 

there are some time-lagged responses that suggest an avoidance or mortality response to inflow 

events, followed by a later increase in abundance perhaps due to beneficial effects of inflow. 

These analyses are very preliminary and employ only linear statistics. A more sophisticated time-

series analysis will be necessary to expose a relation between blue crabs and inflow (as well as 

salinity).” 
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From Section 3.2.3, pp.42-43, in SAGES Final Report (Slack et al., 2009):  

 

“Section 3.2.3 Crab density as a function of habitat type, salinity, water level, and wind velocity 

 

We represented daily blue crab density as: 

 

BCi,j,t = e (0.3751 + b1i + b2j + 1.844(wlt) + 0.1010(Salt) – 0.2597(wst))                                                                                                   (3) 

 

where BCi,j,t represents the density (number of crabs/m2) of crabs between 11 and 30 mm 

carapace width in territory i, habitat j at time t; b1i and b2j are parameter estimates for categorical 

variables (Table 3.1) representing the effect of territory (BR, PC, SD) and habitat type (bay, 

connected pond, intermittently-connected pond); wlt and wst represent the 28-day moving averages 

of water level (m) and wind velocity (km/hr), respectively, recorded at the Seadrift gauge in San 

Antonio Bay (http://lighthouse.tamucc.edu/overview/031), and Salt represents the 28-day moving 

average of salinityt (Eq. 1). 

 

Equation 3 resulted from our evaluation of a large set of generalized linear mixed models 

correlating various size classes of crabs with environmental variables (see Appendix A, 

empirical studies #10 and 11) for a complete description of model selection procedures). We 

selected a model (Eq. 3) that predicted crab density relatively well at the ecosystem level 

(Pearson product-moment correlation factor, rave, = 0.792) for small crabs (11 to 30mm carapace 

width). Although this size class is slightly smaller than what whooping cranes eat, given the 

rapid growth of crabs (14 mm/month, Adkins, 1972), we assumed that it provided a good 

estimate of recruitment into the size classes consumed by cranes.  

 

Our results indicated that blue crabs have a complex, non-linear relationship with spatial location 

(i.e., territory), habitat type, salinity, wind speed and water level. Simpler models failed to 

explain the variation in crab numbers. Within our multivariate model, salinity was a statistically 

significant factor, and was positively correlated with blue crab abundance, however, it is 

important to note that our model is not a single-factor model and contains four other variables 

that act synergistically with salinity to explain the abundance and distribution of blue crabs. Our 

sensitivity analysis of model parameters (Slack et al., 2009, Tables 3.3A-C) indicated that, 

compared to all of the other variables in the equation, salinity was the least important. In fact, 

doubling salinity (that is, a 100% increase in salinity), holding other parameters constant, 

resulted in an increase of less than 1 crab / m
2

 (Tables 3.3A-C). Water level was the most 

important continuous variable in our equation. Simulating a 100% increase in water level, 

holding other parameters constant, resulted in a 300% increase in simulated blue crab abundance 

(Tables 3.3A-C). 

 

The relationship between the distribution and abundance of blue crabs and the environment is 

complex (Guillory et al., 2001). Blue crab distribution and survival have been reported to be 

affected by several factors including salinity (which is the relationship most often explored), 

water temperature, water circulation, tides, bottom substrate, predation, habitat loss, food 

availability, inter- and intra-specific competition, among others (Oesterling and Evink, 1977; 

Daud, 1979; Laughlin, 1982; Van Engel, 1982; Heck Jr and Coen, 1995; Guillory et al., 2001). 



Draft:  Blue Crab Simulation Model for Aransas and Copano Bays, TX, USA 
Developed for Mission-Aransas NERR Science Collaborative: Balancing Freshwater Needs for a Changing Environment.   
2013 

W. E. Grant, Hsiao-Hsuan Wang 
 

30 
 

The diversity of possible factors, as well as possible synergistic effects among factors, makes 

precise identification of the influence of specific variables difficult (Guillory et al., 2001). 

 

Several previous studies have focused on the relationship between blue crabs and salinity, but a 

consensus regarding the exact effects of salinity on the distribution of blue crabs has not been 

reached. Daud (1979) found small blue crabs (5-10 mm CW) in shallow brackish waters and 

larger size classes in fresher waters. Perret et al. (1967) and Swingle (1971) noted that maximum 

blue crab abundance was at salinities less than 5 ‰, which contradicts the results of Christmas 

and Langely (1973) and Perry and Stuck (1982), who both found highest abundances at salinity 

above 14.9 ‰, with abundance decreasing when salinities were above 25 ‰. Hammerschmidt 

(1982) was unable to correlate blue crab catch data and salinity. Walther (1989) found a negative 

correlation between blue crab catch and salinity. The blue crab commercial harvest in the 

Guadalupe estuary did not have a significant relationship with salinity (Texas Department of 

Water Resources. 1980). Pugesek et al. (2008) estimated blue crab abundance at Aransas 

National Wildlife Refuge by walking transects and were unable to develop a significant 

relationship with salinity, water level, habitat type, or distance to open water. In laboratory 

studies, growth rates (Cadman and Weinstein, 1988) and percent survival (Guerin and Stickle, 

1997) of juvenile blue crabs generally increased with salinity, but the effect of salinity on growth 

was minimal in comparison to that of temperature. 

 

The mixed results and breadth of these aforementioned studies indicates that the relationship 

between blue crabs and the environment is complex and depends upon the interactions among 

many different variables. The results from our study agree with Guillory et al., (Guillory et al.) in 

that blue crab abundance is best explained by a suite of environmental factors that cannot be 

simplified into single-factor predictive models.”  
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